
TASK-ANALYTIC DESIGN OF GRAPHIC PRESENTATIONS

by

Stephen Michael Casner

B.S., Millersville University, 1984

M.S., University of Colorado, 1989

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

1990

© Copyright 1990

Stephen Michael Casner

TASK-ANALYTIC DESIGN OF GRAPHIC PRESENTATIONS

Stephen Michael Casner, Ph.D.

University of Pittsburgh, 1990

BOZ is an automated graphic design and presentation system that designs graphics based

on an analysis of the task for which a graphic is intended to support. When designing a

graphic, BOZ aims to optimize two ways in which graphics help expedite human

performance of information-processing tasks: (a) allowing users to substitute simple

perceptual inferences in place of more demanding logical inferences; and (b) streamlining

users' search for needed information. BOZ analyzes a logical description of a task to be

performed by a human user and designs a provably equivalent perceptual task by

substituting perceptual inference steps in place of logical inferences in the task description.

BOZ then designs and renders an accompanying graphic, encoding and structuring data in

the graphic such that performance of each perceptual inference is supported and visual

search is minimized. BOZ produces a graphic along with a perceptual procedure describing

how to use the graphic to complete the task. A key feature of BOZ’s task-analytic approach

is that it is able to design different presentations of the same information customized to the

requirements of different tasks.

A second component of BOZ allows the logical and perceptual task descriptions to be

directly used as cognitive simulations. The simulation component allows us to generate

detailed theoretical predictions about the utility of any presentation with respect to a task.

Simulations of logical and perceptual procedures track the number of inference steps and

items searched for any combination of task procedure and presentation. Reaction time

studies done with real users for one task show that a BOZ-designed graphic significantly

reduces users' performance time to the task. Regression analyses link the observed

efficiency savings to predictions about perceptual operator substitutions and pruning of

visual search obtained using BOZ's simulation component. BOZ is used to design graphic

presentations in a range of real-world task domains including customer airline reservations,

class scheduling, a computer operator task, and statistical graphics.

i

FOREWARD

This work was supported by the Office of Naval Research, University Research Initiative

Contract Number N00014-86-K-0678. I thank Keith Agee, Adam Beguelin, Stephanie

Behrend, Brigham Bell, Mitchell Blake, Jeffrey Bonar, Sergio Bravo, Carol Casner,

Frederick E. Casner III, Lynn Casner, Shi-Kuo Chang, David Connor, Ron Davis, Amy

Doria, Anne Faltine, Jesús Gonzáles Ruiz, Bonnie John, Steve Johnson, Blair King, Ken

Koedinger, Mark Kuta, Jill Larkin, Alan Lesgold, Clayton Lewis, Kendall Loughney,

Alison Maddox, Tom Marion, Heather McQuaid, Allen Newell, Stellan Ohlsson, William

Oliver, Coco Ortíz, John Pfeil, Perry Riggs, Doug Roesch, Paul Ross, Paul Ryan, Lael

Schooler, Elaine Siemon, Gale Sinatra, Janice Singer, Stuart Smith, Suzanne Sundquist,

Rich Thomason, Jorge Urzúa, Lalo Urzúa, Pita Urzúa, Alejandro Valdés, Roger Webster,

Craig Wiederhold, George Wilson, and Winston for their help in getting me from there to

here.

E também um pouco duma raça,
Que não tem medo de fumaça,

Que não se entrega não.

i

TABLE OF CONTENTS

Page

FORWARD...i

INTRODUCTION...1

1. THE COGNITIVE UTILITY OF GRAPHIC PRESENTATIONS......................5
1.1. Computational Advantages...5
1.2. Search advantages...7
1.3. Summary...14

2. RELATED WORK...16
2.1 Early Graphic Design..16
2.2 Graphic Design Practices..16
2.3 Automated Graphic Presentation Tools..22
2.4 Experimental Studies of People Using Graphics.................................27

2.4.1 Studies of Human Visual Perception...................................27
2.4.2 Studies of Complex Task Performance Using Graphics.............37

2.5 Information-Processing Models of Graphic Design and Use...................42
2.6 Conclusions...44

3. TASK-ANALYTIC DESIGN OF GRAPHIC PRESENTATIONS......................46
3.1 Logical Task Description Language..49
3.2 Perceptual Operator Substitution...54

3.2.1 A Catalog of Perceptual Operators......................................54
3.2.2 Substituting Operators .. .57

3.3 Perceptual Data Structuring...64
3.3.1 Operator Vectors..65
3.3.2 Relationships Between Vectors...66

3.4 Perceptual Operator Selection...68
3.4.1 Human Performance Rankings for Perceptual Operators............69
3.4.2 Primitive Graphical Language Expressiveness........................71
3.4.3 Operator Combinability..71

3.5 Graphic Presentation Rendering..76
3.5.1 Translating Logical Facts to Structured Graphical Facts.............76
3.5.2 Rendering Graphical Facts .. .77
3.5.3 Interactive Graphic Presentation Objects...............................80

3.6 Limitations of BOZ’s Automated Design Approach80
3.6.1 Limitations of the Task Description Language........................80
3.6.2 Limitations of the Perceptual Operator Substitution
Component .. .81
3.6.3 Limitations of the Automated Perceptual Operator Selection
Component .. .82
3.6.4 Limitations of the Automated Rendering Component................85

4. THEORETICAL MEASURES OF GRAPHIC DESIGN EFFECTIVENESS88
4.1 Perceptual Computation...88

4.1.1 Substituting Perceptual Operators89

ii

4.1.2 Operator Elimination90
4.1.3 Hypothesized Computational Advantages of the Airline
Graphic..92

4.2 Visual Search...93
4.2.1. Locality .. .93
4.2.2 Indexing95
4.2.3 Parallelized Operators..96
4.2.4 Predicted Search Advantages of the Airline Graphic.................98

5. GRAPHIC DESIGN EXAMPLES...102
5.1 An Extended Set of Airline Reservation Tasks...................................102
5.2. SPOOL File Management..120
5.3. Class Scheduler Interface127
5.4. Information Graphics...132

5.4.1 Consumer Report...132
5.4.2. Employees..135

5.5. Conclusion...138

6. EXPERIMENTAL STUDY OF GRAPHIC DESIGN EFFECTIVENESS.............139
6.1 Method139
6.2 Theoretical Predictions142
6.3 Results and Discussion..144
6.4 Conclusion..148

7. CONCLUSIONS AND DISCUSSION149
7.1 Summary..149
7.2 Contributions...149
7.3 Limitations of BOZ152

7.3.1 Cognitive Issues..152
7.3.2 Automated Graphic Design Issues......................................158

7.4 Other Advantages of BOZ-Designed Graphic Presentations....................160
7.5 Advantages of Graphic Presentations Not Addressed by BOZ.................161
7.5 Further Issues163
7.6 Concluding Remarks164

APPENDIX167

BIBLIOGRAPHY...176

i

LIST OF TABLES

Table 1: Six Task-Specific Advantages of Graphic Presentation Use

Table 2: The Primitive Graphical Languages

Table 3: Perceptual Operators

Table 4: Equivalence Classes for Perceptual Operators

Table 5: Members of Two Operator Equivalence Classes

Table 6: Ranking of Perceptual Operators and Equivalence Classes

Table 7: Graphic Presentation Objects of the Primitive Graphical Languages

Table 8: Composition Rules for Graphic Presentation Objects

Table 9: Predicted Computational Advantages of the Airline Schedule Graphic

Table 10: Predicted Search Advantages of the Airline Schedule Graphic

Table 11: Predicted Efficiency Advantages of the Specific Layover Graphic

Table 12: Predicted Efficiency Advantages of the Cheapest Flight Graphic

Table 13: Predicted Efficiency Advantages of the Minimum Connections Graphic

Table 14: Predicted Efficiency Advantages of the SPOOL Graphic

Table 15: Predicted Efficiency Advantages of the Class Scheduling Graphic

Table 16: Predicted Computational Advantages of the Four Experimental Airline Schedules

Table 17: Predicted Search Advantages of the Four Experimental Airline Schedules

i

LIST OF FIGURES

Figure 1: A Graphic Presentation That Supports Efficient Perceptual Operators.

Figure 2: A Graphic Presentation That Features An Emergent Property.

Figure 3: A Presentation That Uses Multi-Dimensional Graphical Objects.

Figure 4: A Graphic Presentation That Groups Related Quantities in a Single Locality.

Figure 5: A Tabular Presentation That Supports Spatial Indexing.

Figure 6: A Graphic Presentation That Supports Retinal Indexing.

Figure 7: A Tabular Presentation That Supports Retinal Indexing.

Figure 8: A (Very) Crooked Bar Chart

Figure 9: A Second Type of Graphical Lie.

Figure 10: Experimental Studies of Complex Task Performance.

Figure 11: Overview of BOZ

Figure 12: Logical Airline Reservation Procedure

Figure 13: Factbase for the Airline Reservation Task

Figure 14: Operator Classifications for the Airline Reservation Task

Figure 15: Feature Space for the Airline Reservation Task

Figure 16: Vectors for the Airline Reservation Task.

Figure 17: Vector Relationships for the Airline Reservation Task

Figure 18: Initial Perceptual Data Structure Specification for the Airline Reservation Task

Figure 19: The Perceptual Airline Reservation Procedure

Figure 20: Final Perceptual Data Structure Specification for the Airline Reservation Task

Figure 21: Example Graphical Facts

Figure 22: Translated Airline Reservation Facts

Figure 23: Structured Graphical Facts

Figure 24: Rendered Graphic Airline Schedule.

Figure 25: Rendered Seating Chart.

Figure 26: Roth’s Relational Data Types

Figure 27: Pictograms: A Type of Graphic Not Designable by BOZ

Figure 28: Operator Elimination in the Perceptual Airline Reservation Procedure

Figure 29: A Set of Grouped Facts

Figure 30: A Series of Lookup Operators

ii

Figure 31: The rightOfSearchU Parallelized Procedure

Figure 32: Tabular Airline Schedule Presentation.

Figure 33: Simulation Results for the Alternative Procedures and Presentations.

Figure 34: Logical Operators for Airline Reservation Task 1.

Figure 35: Logical Procedure for Airline Reservation Task 1.

Figure 36: Graphic Presentation Designed for Airline Reservation Task 1.

Figure 37: Perceptual Procedure for Airline Reservation Task 1.

Figure 38: Simulation Results for Airline Reservation Task 1.

Figure 39: Logical Operators for Airline Reservation Task 2.

Figure 40: Logical Procedure for Airline Reservation Task 2.

Figure 41: Graphic Presentation Designed for Airline Reservation Task 2.

Figure 42: Perceptual Procedure for Airline Reservation Task 2.

Figure 43: Simulation Results for Airline Reservation Task 2.

Figure 44: Alternative Graphic Presentation for Airline Reservation Task 2.

Figure 45: Logical Operators for Airline Reservation Task 3.

Figure 46: Logical Procedure for Airline Reservation Task 3.

Figure 47: Graphic Presentation Designed for Airline Reservation Task 3.

Figure 48: Perceptual Procedure for Airline Reservation Task 3.

Figure 49: Simulation Results for Airline Reservation Task 3.

Figure 50: Logical Operators for the SPOOL Task.

Figure 51: Logical Procedure for the SPOOL Task.

Figure 52: Graphic Presentation Designed for the SPOOL Task.

Figure 53: Simulation Results for the SPOOL Task.

Figure 54: Logical Operators for the Class Scheduling Task.

Figure 55: Logical Procedure for the Class Scheduling Task.

Figure 56: Graphic Presentation Designed for the Class Scheduling Task.

Figure 57: Perceptual Procedure for the Class Scheduling Task.

Figure 58: Simulation Results for the Class Scheduling Task.

Figure 59: Logical Operators for the Consumers Task.

Figure 60: Graphic Presentation Designed for the Consumers Task.

Figure 61: A Second Graphic Presentation for the Consumers Task.

Figure 62: Logical Operators for Employees Task 1.

Figure 63: Graphic Presentation Designed for Employees Task 2.

Figure 64: Logical Operators for Employees Task 2.

Figure 65: Graphic Presentation Designed for Employees Task 2.

Figure 66: Graphic Presentation Designed for A Combination of Employees Tasks 1 & 2.

Figure 67: Four Experimental Graphics.

iii

Figure 68: Participants’ Mean Performance Times for the Airline Reservation Task.

Figure 69: A Database Query Task Description Language.

Figure 70: A Graphic Presentation That Provides Control Information.

Figure 71: A Memorable Graphic Presentation.

1

INTRODUCTION

Our intuitions about the utility of graphic presentations of information have long suggested

that graphics are indeed a useful tool for communicating, comprehending, storing, and

analyzing information. Many striking examples of graphics seem to “reveal” characteristics

of a data set or help us reason more efficiently about information that expressed in a

different format would seem to require more work or be prohibitively complex.

Consequently, it is no surprise that graphics enjoy widespread use. While efforts to create

interesting graphic presentations date back to the late 1700’s, it has been only recently that

investigators have concerned themselves with empirically testing the utility of graphics as

artifacts to support information-processing tasks. A striking conclusion of recent empirical

studies1 is that it is a false assumption that graphic presentations are inherently better than

other presentations, or that perceptual inferences are always made more efficiently than

non-perceptual inferences. Rather, these studies suggest that the usefulness of a graphic is

a function of the task that the graphic is being used to support. Twenty-nine independent

empirical studies surveyed in Jarvenpaa and Dickson (1988) found graphics superior to

tabular presentations for a restricted set of information-processing tasks, and observed no

benefits or poorer performance for other tasks. Examples of graphics that succeed in

practice are best explained as “situationally dependent artifacts” whose success arises out of

the combination of task performed and the particular graphic used. Generalizations made

about the observed usefulness of a graphic for one task are highly inappropriate since using

the same graphic for different tasks typically cause the usefulness of the graphic to

disappear. Consequently, graphic design principles that focus on an analysis of the

1 Experimental studies of the practical utility of graphic presentations have been conducted mainly in the
fields of Management Information Systems [Benbasat et al, 1986; Dickson et al, 1986; Jarvenpaa and
Dickson, 1988] and Human Factors [Salomon, 1972; Gibson and Laios, 1978; Krohn, 1983; Robinson and
Eberts, 1987; Tullis, 1981].

2

information to be presented in a graphic, such as “line graphs are best for continuous data,”

are too under-specified to be useful in general. That is, empirical studies have shown that

line graphs are supportive of some tasks that manipulate continuous data and are

detrimental to the performance of others. The implication is that effective graphic design

should begin with the task that a graphic is intended to support, and be focused on finding

those parts of a task, if any, that might be performed more efficiently within the context of

a graphic presentation. Analysis of the information to be presented in a graphic is assigned

a secondary role.

Adopting the view that there exists a strong tie between the utility of a graphic presentation

and the purpose for which it is intended defines three important sub-goals in developing a

scientific treatment of the design of graphic presentations to support information-processing

tasks. First, there is a long-standing challenge to replace intuitive notions with a more

detailed and scientific understanding of how graphics and the procedures used to interact

with them leverage problem solving and task performance. Second, there is a need to

articulate a prescriptive task-based design theory for graphic presentations. Such a theory

would begin with an understanding of a task to be supported and guide the designer in

constructing a graphic, applying specific principles of how graphics support tasks at each

step, placing analysis of the information to be presented in a secondary role. Third, there is

a need to establish techniques for predicting the utility of a graphic presentation with respect

to a task. These techniques would measure important parameters when combinations of

presentations and tasks are considered. These parameters would enable theoretical

predictions about the utility of a presentation purported to support an information-

processing task, as well as meaningful comparisons between alternative presentations.

Larkin and Simon (1987) in an earlier treatment of graphics, aimed to articulate a set of

scientific principles that describe why performing an information-processing task using a

graphic under some circumstances provides advantages to the user. An important premise

3

of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful

to characterize graphic-based problem solving using the same information-processing

models used to help understand problem solving using other representations [Newell and

Simon, 1972]. Characterizing graphics and tasks using familiar information-processing

models allowed Larkin and Simon to make detailed comparisons between “logical” tasks,

i.e., tasks performed outside the context of any particular representation, and perceptual

tasks performed using a graphic. Larkin and Simon’s analysis showed that comparisons

between tasks performed using alternative informationally equivalent representations could

help lead to the discovery of concrete ways in which graphics support task performance.

Larkin and Simon’s work produced two general principles of how graphics support tasks.

Graphics often allow users to: (1) substitute quick perceptual judgements in place of more

demanding logical inferences; and (2) to expedite search for needed information.

This dissertation explores an approach to the design of graphic presentations based on an

analysis of the tasks for which they are intended to support. The design approach is

implemented in an automated graphic design and presentation tool called BOZ. The core

idea behind BOZ can be summarized as follows. Since the potential advantages of graphics

are task-related, graphic design activities should focus on designing efficient perceptual

tasks. Decisions made about how to encode and structure information in an accompanying

graphic should be based primarily on supporting efficient and accurate performance of the

perceptual task. The enabling step in the task-analytic approach is to capture the notion of a

perceptual task performed by human users using the same formal framework used to

describe other types of information-processing tasks, allowing design decisions to follow

formal criteria.

Chapter 1, drawing on Larkin and Simon’s work, develops a theoretical analysis of the

computational and search advantages that arise during execution of graphic presentation-

based problem-solving procedures. Chapter 2 reviews other work related to the problem of

4

designing graphic presentations, dating from William Playfair’s efforts in the late 1800’s

up to recent cognitive and experimental research that has directly influenced the ideas

presented in this dissertation. Chapter 3 describes an automated graphic design and

presentation system called BOZ that approaches the design problem from a task

perspective. BOZ analyzes a procedural description of a user task and derives a provably

equivalent perceptual procedure by substituting perceptual inference steps in place of logical

inferences. BOZ automatically designs and renders an accompanying graphic, encoding

data in the graphic such that performance of each perceptual inference is supported and

visual search is minimized. Chapter 4 treats in more depth the computational and search

advantages of perceptual procedures and shows how quantitative predictions can be made

about differences in computational and search efficiency between alternative presentations.

A simulation tool is described that automates the process of generating theoretical

predictions about the utility of a presentation with respect to a task. The simulation

component automatically creates executable simulations from the procedural task

descriptions submitted to BOZ as input, and from the perceptual procedures produced by

BOZ. These simulations are used to make quantitative comparisons between alternative

presentations and procedures. Chapter 5 develops several examples of how BOZ is used to

design graphic presentations to support practical real-world tasks. Chapter 6 describes an

experiment in which participants were asked to use a set of alternative presentations to

compare participants’ performance with theoretical predictions obtained using simulations.

Chapter 7 discusses the implications and limitations of BOZ as a theory of graphic

presentation design, an automated graphic design tool, and as a computational model of

human problem solving within the context of graphic presentations.

1

CHAPTER 1

THE COGNITIVE UTILITY OF GRAPHIC PRESENTATIONS

Larkin and Simon (1987) made two general points about the utility of graphic

presentations: (1) that graphic presentations could sometimes help reduce the amount of

mental computation required to complete a task; and (2) that using a graphics sometimes

allows users to spend less time searching for needed information. This chapter develops a

more detailed breakdown of these two types of advantages and relates them to specific

graphical techniques available for use when designing presentations.

1.1. Computational Advantages

Larkin and Simon’s first point about the utility of graphic presentations was that graphically

expressed information sometimes allows users to do less mental computation than is

necessary outside the context of a graphic, or to do computational steps that are performed

more efficiently. This analysis is expanded in the present work to explore three specific

types of computational advantages offered by graphics.

Substituting operators. Graphics often allow users to substitute less demanding

perceptual operators in place of more complex logical operators. Perceptual operators

(e.g., distance and color comparisons, spatial coincidence judgements) can often give users

the same information as more complex logical operators. The scatter plot shown in Figure

1 is an example that illustrates how human performance of a set of perceptual operators can

be observably more efficient than performance of informationally equivalent logical

operators. When interpolating values between points using the scatter plot, users can

substitute the task of perceptually constructing a line connecting two adjacent points and

2

Figure 1: A Graphic Presentation That Supports Efficient Perceptual Operators.

looking up values along that line, for the task of subtracting and dividing two data values.

For large data sets, repeatedly performing this efficient perceptual task allows users to

quickly understand overall trends in the data.

Step skipping. Graphics sometimes allows users to omit steps that are otherwise

necessary when a task is performed without a graphic. For example, when determining

absolute differences between two biannual figures using the scatter plot in Figure 1, there is

no need to determine the values for the two years. That is, the user can simply determine

the vertical distance between two points in the plot and report the answer. The steps that

determine the data values themselves can be skipped. Producing the same answer using

numerically expressed information would require that the data values for the two individual

years be known and then subtracted.

3

Emergence. Graphic presentations sometimes encode information additional to what is

intended. A graphic devised by Ohlsson (1987) for teaching fractions concepts (shown in

Figure 2) demonstrates a property called emergence.

1 /4

2 /4

 Figure 2: A Graphic Presentation That Features An Emergent Property.

Ohlsson’s analysis of the Rectangles World shows that the numerator and denominator of a

fraction are represented by the height and width of a rectangle, respectively. However,

when these two encodings are used and the diagonal of the rectangle is drawn, the slope of

the diagonal encodes the value of the fraction. Consequently, comparing two fractions is

now reduced to the task of comparing the slopes of two lines. There is no need to compute

the value of the fractions since they are explicitly represented through an emergent property

of the graphic presentation (slope). Mackinlay and Genesereth (1985) generalize this

property to show that it is an unavoidable phenomenon to express facts using some

graphical dimensions without expressing facts in other dimensions.

1.2. Search advantages

Larkin and Simon’s second basic point about the utility of graphic presentations was that

they sometimes allows users to reduce the time spent searching for information. This

analysis is developed in the present work to illustrate three ways in which graphics help

users reduce search for information.

Locality. Objects in a graphic can have many perceptual properties including spatial

position, size, shape, color, labels, etc. Graphics help users save time when searching for

needed information when they group several related dimensions of information in a single

4

graphical object by encoding that information using various perceptual dimensions of the

graphical object. The graphic in Figure 3 demonstrates this technique.

Figure 3: A Presentation That Uses Multi-Dimensional Graphical Objects.

The multi-dimensional graphical objects in Figure 3 reduce the need for the eye to travel

between items in the graphic. Each object in the graphic in Figure 3 encodes six

dimensions of information about cars: car manufacturers (shape), the models they produce

(labels), price (horizontal position), miles per gallon (labels), type of safety features

(shading), and miles between repairs (vertical position). When looking up relevant

information about a single car search time is reduced because no eye movement is

necessary between items.

Vector diagrams, shown in Figure 4, are a second example of a graphic presentation that

encodes multiple dimensions of information in the same locality. Each vector in the plane

5

encodes information about direction (slope), magnitude (length), and whether or not the

vector has been derived from other component vectors (thickness).

a

b
a + b

Figure 4: A Graphic Presentation That Groups Related Quantities In A Single Locality.

Search reductions due to locality are constrained by limitations on short-term memory in

two important ways. First, as the number of perceptual dimensions used in a single

graphical object increases, it becomes increasingly difficult to maintain all properties of that

object in memory at one time [Ericsson et al, 1980]. If the number of dimensions used in

any single perceptual inference exceeds four, it is likely that the user will need to perceive

the object several times. Second, as the number of different values that each perceptual

dimension can take on increases, it may be necessary for the user to consult a key or legend

where this information is permanently recorded, again causing search reductions to

disappear.

Indexing. Several perceptual dimensions used to encode information in graphic

presentations, such as spatial position, color, shading, texture, and shape, can be

processed by humans pre-attentively [Treisman, 1977; Treisman and Gelade, 1980; Beck

and Ambler, 1973; Pomerantz et al, 1977; Julesz, 1981]. Information encoded in a graphic

using these perceptual dimensions can be perceived and understood without requiring the

eye to be fixed at the location where that information is expressed. Perceptual dimensions

that do not support pre-attentive processing require eye fixations for all items considered

during search [Nickerson, 1966]. Perceptual dimensions that support pre-attentive

processing are often referred to as indexing dimensions [Ullman, 1984] since they allow

users of a graphic to quickly partition or index the items appearing in a graphic along a

6

particular dimension of information. Two types of indexing perceptual dimensions are

distinguished here.

Spatial indexing perceptual dimensions allow users of a graphic presentation to single out a

subset of items by following a restricted path of eye movement over the graphic. The

tabular presentation in Figure 5 uses spatial indexing to partition the data pertaining to

tourism in South American countries among the rows and columns of a table.

Figure 5: A Tabular Presentation That Supports Spatial Indexing.

To locate all information pertaining to a particular country, a user can simply scan the

relevant row which contains this information. Similarly, using the graphic presentation in

Figure 3, when looking for a low-priced car users can limit their search to cars appearing

along the bottom of the graphic since the vertical position of each car is being used to

denote price.

7

Retinal indexing allows users to immediately attend to items having particular data values

when those values are encoded using one of the retinal indexing perceptual dimensions

such as color, texture, or shape. For example, the plot chart in Figure 6 uses squares

positioned in the plane to represent sales totals and number of years worked by sales

managers within a company, and shading to encode their retirement status.

Figure 6: A Graphic Presentation That Supports Retinal Indexing.

Using the graphic in Figure 6, when looking for a retired sale manager, the user can

immediately rule out from their search all unshaded squares, reducing the total items

searched to seven. Green and Anderson (1956) provide evidence that users are indeed able

to immediately rule out all items not having the target color, limiting visual search to

qualifying items only. Investigators have shown that several other perceptual dimensions

can sometimes be processed pre-attentively when they are decoded using the same strategy

used to decode some other pre-attentive perceptual dimension. Neisser (1964) showed that

8

words can sometimes be identified in a list by attending only to their shape or size when the

number of unique words is small. For example, when using the tabular sales managers

presentation in Figure 7, users can achieve the same search savings obtained using the

graphic presentation when searching for a retired manager.

Figure 7: A Tabular Presentation That Supports Retinal Indexing.

Since only two words are needed to encode the different retirement statuses (i.e., active and

retired), Neisser’s data suggests that users are able to pre-lexically recognize the word

“retired” in the third column by considering only its shape.

Parallelized operators. Earlier studies suggest that the efficiency at which perceptual

operators are performed, or the nature of the brain hardware that implement them, allows

some perceptual operators to be executed in parallel. This capability allows the user to

expedite the process of computing visual search constraints and to rule out many items in a

9

graphic presentation that would otherwise need to be considered. While the question of

whether or not perceptual operators can truly be executed in parallel remains open for

debate, experimental evidence suggests that it is indeed the case that several operators can

be performed in less than the sum of the times that would be required to perform each

operator individually.

Ullman (1984) distinguishes two1 types of parallelism. Spatial parallelism occurs when a

single perceptual operator is simultaneously executed at more than one spatial location

within a graphic. For example, the task of comparing the colors of two car symbols in

Figure 3 is an example of spatial parallelism when the task is performed by fixing the eye at

a position between the two symbols. There are two important limitations on the examples

of spatial parallelism we can hypothesize. First, spatial parallelism relies on the

phenomenon referred to as retinal indexing above. Since the eye cannot be fixed at more

than one spatial location at a time, the operator that we claim to be performed

simultaneously at separate locations cannot require eye fixation. Second, spatial parallelism

can succeed only when the complete set of spatial locations where the operator is to be

applied occur within a range of roughly 3° from the point of eye fixation.

Functional parallelism occurs when two or more unique perceptual operators are executed

simultaneously at the same spatial location within a graphic. For example, when the eye is

fixed on a particular vehicle in the presentation in Figure 3, users can simultaneously

determine the make (shading) and model (shape) of that vehicle.

It is important to note that functional parallelism cannot be performed simultaneously with

spatial parallelism. Treisman (1977) and Treisman and Gelade (1980) asked participants to

1 Ullman (1984) describes a third kind of parallelism called temporal parallelism. Temporal parallelism
applies a sequence of perceptual operators, pop1, pop2, ..., popn, to the items in a temporal string input,
I1, I2, ..., Im. The application of the operators is parallelized in the following way. pop1 is first applied
to I1. Next, as pop2 is being applied to I2, pop1 is simultaneously applied to I2.

10

locate a unique green T within a presentation containing brown Ts and green Xs. This task

allows the possibility to exploit both types of parallelism simultaneously. That is, the

fastest strategy is one in which the perceptual operators of judging the shape of a letter and

determining the color of a letter are performed simultaneously (functional parallelism) at

multiple locations (spatial parallelism).

1.3. Summary

The above discussion describes six observations that comprise what we currently

understand to be the ways in which the use of a graphic presentation can expedite the

performance of an information-processing task. Table 1 summarizes these observations. It

was shown that combinations of tasks and presentations can be found in which the

advantages described in Table 1 arise. The purpose of this dissertation is to address the

more general research question:

Is there a principled theory of graphic presentation design that proceeds by

analyzing the specifics of a task to be supported and that produces a graphic

presentation that best exploits each of the six advantages that graphic

presentations can offer?

11

Table 1: Six Task-Specific Advantages of Graphic Presentation Use

1. Substituting Operators: Efficiently performed perceptual operators sometimes give users the same
information as more demanding logical operators.

2. Step Skipping : Perceptual operators that compute or compare values do not require the user to
explicitly know the values of the data upon which they operate.

3. Emergence: Some graphical conventions encode information additional to what is explicitly intended,
allowing the user to obtain some information more easily.

4. Locality: Graphical objects in a presentation can exploit the many perceptual dimensions to encode
several dimensions of information at a single spatial location, eliminating search when collecting data
values pertaining to a single object or entity.

5. Indexing: Some perceptual dimensions can be perceived pre-attentively. This feature allows the user
to immediately attend to graphical objects having “odd man out” graphical properties avoiding the need to
consider all graphical objects in a presentation during search.

6. Parallel Operator Performance: Some perceptual inferences can be performed in parallel, allowing
user to apply multi-dimensional search criteria during visual search. The space of graphical objects
considered during search is reduced by simultaneously disqualifying all graphical objects not implicated by
the search criteria.

1

CHAPTER 2

RELATED WORK

2.1 Early Graphic Design

William Playfair (1759-1823) and Johann Heinrich Lambert (1728-1777) are generally

credited with introducing modern information graphic design.1 Playfair, a British political

economist, in a series of three books [Playfair, 1786, 1798, 1801] set forth a family of

novel graphic techniques for displaying statistical data.2 Playfair pointed out that the

usefulness of his inventions rested in the observation that “as much information may be

obtained in five minutes as would require whole days to imprint on the memory, in a

lasting manner, by a table of figures [Playfair, 1786].” Many of Playfair’s graphical

inventions, such as the bar chart, pie chart, circle graph, and rectilinear coordinate graph,

comprise many of the popular graphic designs used today. J. H. Lambert, a Swiss-

German scientist, is credited with adopting the time-series graph (the most popular form of

graphic used today) into scientific use.3

2.2 Graphic Design Practices

Scores of books on the topic of graphic presentation appeared immediately after Playfair’s

early works and continue to be written today. Early books such as Karsten (1923),

Haskell (1926), Modley (1932), Brinton (1939), and Hall (1943) aimed to provide the

1 Arnheim (1969) makes the point that one reason for the delayed introduction of graphical presentations
for scientific purposes is that perception was traditionally considered to be inferior to other thought
processes since is did not involve the use of language.
2 Playfair’s inventions, of course, draw on many ingenious inventions that pre-dated him, such as the
Cartesian coordinate system, analytic geometry, and cartographic maps. Funkhouser (1937) provides an
interesting discussion of the origins of graphical displays.
3 Interestingly, the invention of the time-series graph may pre-date Lambert by as much as 800 years!
Funkhouser (1936) presents an example of a time-series graph depicting planetary orbits believed to have
been created sometime during the tenth or eleven century (cited in Tufte (1983)).

2

reader with a collection of formats popularly used for graphically presenting data. These

books focused on explaining the graphical conventions used to portray data and the

situations in which each different graphic technique was believed to be most effective.

Explanations of why and when different graphic designs were useful relied mainly on

informal analyses of the information to be portrayed in the graphic.

Lockwood (1969), Tufte (1983), Tufte (1990), Martin and McClure (1985), McCleary

(1981), Cleveland (1985), and Schmid (1983) comprise a second generation of information

graphic design books. These books extend earlier works in an important way by

advancing more sophisticated design principles that are sensitive to many observed features

of human visual perception such as perceptual distortion, salience, and the negative effects

of graphical decorations that do not encode relevant information (i.e., “chart junk [Tufte,

1983]”), and provide useful advice about how to insure correct interpretation of graphical

conventions. Kosslyn (1985) reviews several of these books and the perception-related

issues they address. An important limitation of the books is that, even though several of

the books argue that the purpose of a graphic is a first design concern [Schmid, 1983], they

provide limited prescriptive information about how to match graphics to user tasks. Some

design principles focus entirely on an analysis of the information to be presented. For

example, Tufte (1983) argues that “time-series presentations are at their best for big data

sets with real variability.” These principles assume that the user will use the graphic for a

single task: to globally comprehend and summarize all of the information presented in the

graphic. Tufte illustrates the usefulness of the time-series presentation with a famous

graphic presentation of train schedule information developed in the late 1800’s [Marey,

1885]. It is not clear that anyone (other than railroad company management) would ever

use the presentation to comprehend or summarize all of the information in the train schedule

graphic. A more likely task would be to find a single train that meets a particular user’s

time and place constraints. Other design principles do include task-specific criteria.

Schmid (1983) points out that “the bar chart is characteristically used for direct

3

comparisons of magnitude for descriptively labelled categories.” Schmid’s task-based

principles, however, are limited in two important ways. First, the tasks are usually limited

to simple data look-up and comparison tasks. This overlooks many of the uses of graphics

for supporting more sophisticated computational tasks such as arithmetic, proportional

reasoning, and interpolation, and does not recognize the usefulness of graphics for

supporting visual search tasks. Second, the principles do not provide information about

how to combine the features of two or more graphic designs to arrive at original designs to

support novel tasks.

Jacques Bertin’s Sémiologie Graphique, first published in 1967, deserves special mention

as due to its depth of analysis unmatched by any other book on the subject of information

graphic design. Bertin’s design approach is based on the premise that the representational

powers of “visual variables,” or perceptual dimensions used to encode information in a

graphic, can be formally articulated. The design of a graphic presentation proceeds by

analyzing the type and size of each domain set of information to be depicted in a graphic

and matching each domain set with that visual variable whose representational power best

fit the requirements of the domain set.4 Bertin’s work recognizes the importance of the

tasks to be performed with a graphic but only treats a limited set of tasks for which

graphics are useful: value look up, recognizing global trends, and improving memory for

data. Other more complex tasks involving perceptual computation and visual search are not

considered and do not follow immediately from Bertin’s information-analytic design

proposal. Bertin introduces the informal notion of the efficiency of a graphic based on

Zipf’s notion of “mental cost” as applied to visual perception [Zipf, 1935] and this is

consistent with Larkin and Simon’s definition of cognitive efficiency. Bertin’s applies the

notion of efficiency to locating a graphic design for a given data set such that “all questions

[about the data set] are answered in a single instance of perception,” where the set of “all

4 Bertin’s information analysis is limited to what mathematicians would refer to as function dependency
relations. Roth et al (1989) make the point that graphics are commonly used to encode several other types
of relational information. This issue is expanded in Chapter 3.

4

questions” is the set of “information communication” tasks considered in Bertin’s work.

Bertin discusses scores of other important graphic design issues such as perceptual

procedure learning, decoding, salience, grouping effects, and distortion. Graphic design

strategies are recommended that are consistent with experimental investigations of the same

topics (reviewed below), although these works are not cited in the book.

Kosslyn (1989) provides an in-depth analysis of graphical conventions aimed at identifying

conventions that lead to erroneous interpretation of graphics. Kosslyn proposes a three-

fold analysis technique that considers the syntax, semantics, and pragmatics of a

presentation. Kosslyn’s syntax refers to the graphical organization of the points, lines, and

areas that appear in a presentation. Graphical syntax is largely concerned with issues such

as perceptual discriminability, salience, processing limitations, distortion, and continuity.

Semantics refers to the correspondences between the “visual variables [Bertin, 1983]” used

in a graphic and the domain sets of information that they are used to represent. Kosslyn’s

basic principle of good graphical semantics is that each visual variable used in a graphic

should represent exactly one dimension of information, an issue discussed in detail in

Chapter 7. The pragmatics of a graphic loosely describe the appropriateness of the graphic

for a stated task or purpose. Graphical pragmatics considers the amount and type of

information to be included in a presentation with respect to the information needs of the

user, as well as choosing an appropriate format for each type of information.

An important notion advanced in early books concerned with the use of graphic

presentations in business practices was that of maintaining the integrity of a data set when

that data set is encoded graphically. Business graphics manuals argue that the preparation

of a graphic should be viewed as the rigorous transformation of numerically expressed data

to graphical expressions of precisely that same data. A graphic presentation should only

serve to change the efficacy to which a set of possible valid inferences can be made about a

data set, not affect the inferences themselves. Huff (1954) exposed many creative

5

graphical practices used to entice readers into drawing “creative inferences” that do not

follow from more honest presentations of a data set. Huff’s book, entitled How To Lie

With Statistics, gives examples collected from books, magazines, and newspapers. Huff’s

examples can be categorized into two general types of “graphical lies.” The first type of lie

relies on the use of a graphical encoding convention for which the reader is unlikely to

follow when decoding the graphic. Figure 8 shows a “crooked bar chart” in which the

absolute height of each bar encodes a data value. The crooked bar chart succeeds when the

reader is tricked into basing their comparisons between data values based on the absolute

vertical position of the top of each bar. For example, the reader might infer that the

Columbian and Brazilian tourism industries are comparable since the two bars in the

graphic extend up to the same vertical position.

0

1 0

2 0

3 0

4 0

5 0

peru

bolivia

brasil

colombia

tourists
in 1000's

Figure 8: A (Very) Crooked Bar Chart

A second type of “lie” uses less sophisticated tactics. The graphic at the top of Figure 9

depicts a 3.4 percent rise in price levels for the year 1978. The graphic uses a scissors

positioned along a dollar bill to convey the percentage of the dollar that is lost to the price

increase. Unfortunately, the amount of the dollar being cut away is somewhat larger than

the actual cut. The graphic at the bottom of Figure 9 shows the scissors when repositioned

to reflect the actual amount of the dollar being cut away. This type of lie employs an honest

encoding convention but neglects to accurately map data values between graphical and non-

graphical scales. The scissors example appears in a second, more recent book on the

misuse of statistics and graphics [Jaffe and Spirer, 1987].

6

Figure 9: A Second Type of Graphical Lie.

7

2.3 Automated Graphic Presentation Tools

A second area of graphic design research aims to automate the design and rendering of

graphical presentations. By formally articulating graphic design theories in working

computer algorithms, this body of research aims to be more explicit about graphic design

criteria, bringing the details of each design approach into plain view. Since our

understanding of the issues pertaining to graphics use is growing rather than complete,

automated approaches risk generalization in many areas to achieve operationality.

An early proposal for automated presentation design was Bartlett and Smith (1973) who

applied facilities-allocation algorithms developed for industrial engineering problems such

as plant layout [Haygood et al, 1964; Freund and Sadosky, 1967] to the problem of

locating an optimal spatial layout of a set of dials and controls in an instrument panel.

Bartlett and Smith’s program coordinated usability parameters such as eye-travel and hand-

travel distance between instruments, frequency of use for each instrument, and accuracy of

acquisition.

APT [Mackinlay, 1986] is an automated graphic presentation tool that designs non-

interactive graphic presentations of relational information. A significant contribution of

APT was to formally characterize something that many previous investigators informally

alluded to: that graphic presentations can be expressed as sentences in a formal graphical

language that have the same precise syntax and semantics as propositional formalisms. The

advantage of having a formalism for graphic presentations is that it provides a set of criteria

for deciding the role of each visible sign or symbol placed in a graphic, and improves the

integrity of a graphic presentation by using formal methods for transforming relational facts

to graphical facts. APT’s style of analysis for formal graphical languages has been used by

nearly every graphic presentation tool designed after APT, including the one described in

this dissertation. A second contribution of APT is that, unlike proposals for graphic design

practices, APT designs graphics with a minimum amount of intervention on the part of the

8

designer. That is, APT embodies a genuinely prescriptive theory of how to design a

graphic. However, APT’s design algorithm is based entirely on an analysis of the

information to be presented and does not consider the task for which a graphic is to be

used. This prevents APT from directly exploiting the task-related advantages of graphics,

and from creating different presentations of the same information to support different

tasks.

SAGE [Roth et al, 1989] is a hybrid, text and graphics presentation system that generates

explanations of changes that occur in quantitative modeling systems such as project

modeling systems and financial spreadsheets. Graphic presentations are designed by

SAGE in response to information queries made by the user. Through an analysis of user

queries, SAGE’s design of graphic presentations is sensitive to the goals of the user, taking

an important step toward exploiting the task-related advantages of graphics. SAGE

presently contains only a small set of primitive pre-defined task operators and is not able to

fashion presentations to support complex information-processing tasks involving

combinations of many primitive operators. SAGE does not make use of any theory of

presentation-based problem solving when designing a presentation to support a user task.

Chang (1987, 1988, 1989) describe a family of algorithms and tools aimed at formalizing

the use of pictorial icons as devices to be used for the rigorous encoding of information.

Chang’s research is centered around the observation that despite the representational and

interpretive latitude offered by informal strategies customarily used to encode and decode

iconic information, informal strategies disallow any sort of analysis of what can and cannot

be formally encoded iconically, and at the same time allows rampant use of misleading or

blatently dishonest graphical techniques such as those described in Huff (1954). Drawing

on a set of primitive atomic icons that have pre-established meanings, Chang’s systems

create complex icons by applying a set of composition rules to the primitives. The meaning

9

of any complex icon is functionally dependent on the primitive icons used and the

composition rules that were applied.

Gargan, Sullivan, and Tyler (1988) have partially implemented an adaptive response

planning front-end that can present information to the user in three modalities: text,

graphics, and speech. The tool is targeted for use in particular domains and relies on a

formally specified domain theory describing the kinds of information to be presented in the

application domain. The tool suffers two basic limitations. First, decisions made between

alternative modalities are based on highly general task-independent principles (e.g., “when

given graphical and textual redundancy favor graphical mode”) that empirical studies of

people using graphics find inappropriate. Second, decisions made about designing within

each modality are centered around a set of canned presentation designs contained in the tool

and purely information-theoretic criteria that describe when they are most effectively

deployed (e.g., bar charts are best suited for small data sets).

CUBRICON [Neal and Shapiro, 1989] is a multi-media interface designed for a military

tactical air control application. CUBRICON accepts and presents information to the user in

any of four modalities: color graphics, tables, written text, and spoken language.

CUBRICON relies on an extensive knowledge base representing the details of the

application domain and the types of tasks that users must perform. Three basic types of

decisions are made when preparing presentations for a user. First, a subset of relevant

information must be selected from CUBRICON’s knowledge base that is deemed germane

to the current user’s task. Second, a modality (or combination of modalities) must be

chosen to present the relevant information. CUBRICON uses the same generalized

principle that Gargan et al uses: “our system is based on the premise that graphic/pictorial

presentation is always desirable.” Third, within each modality CUBRICON chooses

among six canned presentation formats. Presentation design criteria follow simple

information-based guidelines that do not consider the details of the task being performed.

10

CUBRICON additionally contains an interesting technique for using pointing (deixis) to

allow the user to secure references when engaged in dialogues with the system.

Integrated Interfaces [Arens, Miller, and Sondheimer, 1989] is an information presentation

tool coupled with an application-specific knowledge base. This system performs two basic

functions: selecting relevant information to appear in a presentation, and determining an

appropriate presentation format (i.e., either tables or graphics). Relevant information is

selected according to inferences drawn using the application’s knowledge base (a

propositional semantic net). This feature allows the tool to consider the details of the

application domain when selecting information, a step not possible in generalized

presentation tools such as Mackinlay’s APT and the one described in this dissertation.

Furthermore, since the tool is highly domain specific, many of the presentation design

decisions are subsumed by existing conventions used in the application domain. For

example, ships are customarily represented as icons, the position of the icon in the

presentation indicating its present location in the sea. Consequently, Integrated Interfaces

performs limited design once a modality has been chosen.

AIPS [Zdybel et al, 1981] accepts descriptions of information encoded using the KL-ONE

[Brachman and Schmolze, 1985] knowledge representation language. AIPS matches the

KL-ONE descriptions against a set of pre-defined presentation formats and chooses that

format that best matches the characteristics of the data. AIPS is not able to design novel

graphic presentations.

BHARAT [Gnanamgari, 1981] accepts descriptions of data sets and chooses one of bar

chart, pie chart, and line chart to depict the data. The presentation format chosen is

determined by the characteristics of the data: line charts are used for continuous data, pie

charts for proportional data, and bar charts for all others. Like AIPS, BHARAT chooses

among existing graphic designs rather than designing new ones.

11

VIEW [Freidell, 1982] creates graphic presentations of information about ships maintained

in a naval database. VIEW’s knowledge base contains information about particular users, a

set of tasks for the domain, and a set of pre-defined KL-ONE descriptions of possible

presentation formats. By matching users’ identities, tasks, and queries against the

presentation format descriptions, VIEW is able to present different graphics in different

contexts. As with AIPS and BHARAT, VIEW does not design its presentation formats.

APEX [Feiner, 1985] creates graphical explanations of actions performed with physical

devices in a 3-dimensional world. Explanations are created by presenting sequences of

static images depicting the individual steps in an action. APEX uses hierarchical

descriptions of the objects that can appear in an explanation, where each level in the

hierarchy contains more detailed features of the object. A second mechanism allows APEX

to determine how much detail is needed at each step and to display only that information.

Since the objects that appear in explanations are highly domain-specific, they must be hand-

created prior to using APEX.

COMET [Feiner and McKeown, 1990] designs coordinated text and graphics explanations

of how to operate complex devices. COMET designs an explanation by first choosing a set

of facts about a device and actions to be performed using the device that are relevant to an

explanation. COMET chooses a presentation format (text or graphics) for each fact and

action. Presentation format selection uses a set of canned decisions about which format

best supports user understanding of a fact or action. These decisions were generated in

advance by authors based on informal studies of user preferences. Graphic presentations

are designed using a separate tool called IBIS that acts as a subsystem of COMET.

IBIS [Seligmann and Feiner, 1989] generates realistic presentations of complex devices in

response to a set of communication goals for that presentation. Communication goals

describe presentation characteristics of the individual components of a device that can be

12

manipulated to achieve different effects. For example, components can be visible or

occluded in an presentation based on their relevance, highlighted to command the viewer’s

attention, or de-emphasized to avoid the viewer’s attention.

2.4 Experimental Studies of People Using Graphics

The following surveys two areas of experimental research relevant to the topics presented

in this dissertation. The first area of research is concerned with understanding the

psychophysical properties of human perception and peoples’ ability to perform primitive

perceptual tasks. The goals of these studies are: (a) to discover ways in which perceptual

encoding of information using each of the available perceptual dimensions can be

advantageous to information processing and comprehension; and (b) to arrive at criteria for

deciding when each type of perceptual encoding should be used. The second area of

research is concerned with assessing the overall utility of graphics when used as tools to

support complex information-processing tasks. The discussion below suggests that the

goals of these studies are often ill-stated. Consequently, the experimental practices used

are seldom consistent between studies, making interpretation and comparison of the results

a difficult enterprise. One important generalization has been made in many of these studies,

namely, that the utility of any presentation is largely a function of the task for which it is

being used.

2.4.1 Studies of Human Visual Perception

The following studies have theoretically and experimentally explored features of human

visual perception by studying human performance on primitive perceptual tasks when

information is encoded using a single perceptual dimension. The goal of this analysis is to

identify the task-related advantages of encoding information in each perceptual dimension.

Visual Search. Neisser (1964) was first to experimentally demonstrate the phenomenon

described in Chapter 1 known as indexing. Neisser’s experiments showed that the

13

identification of a target word in a list did not require that the eye be fixed on each candidate

word in the list. Neisser’s theory of pre-attentive processing explained previous

observations that some perceptual dimensions enjoyed special properties when used in

visual search tasks. For example, Green and Anderson (1956) showed that the time to

locate an object of a particular color in a presentation is primarily a function of the number

of objects having that color. The total number of objects in the presentation has a lesser

effect [Smith, 1962, 1963; Carter and Cahill, 1979; Carter, 1982; Luder and Barber,

1984]. In a second series of experiments Neisser (1963) showed that participants, after

sufficient practice, could search for any one of as many as ten items simultaneously, where

the time to locate one of the ten items was no greater than the time required to locate a single

target. Visual search time has been shown to depend upon data density [Carter and Cahill,

1976; Monk and Brown, 1975; Brown and Monk, 1975], target uncertainty [Monk, 1976],

the dimensionality of the target item [Teichner and Mocharnuk, 1979], the proximity of the

target item to the center of the presentation (the “edge effect”) [Monk, 1981], visual

conspicuity [Monk, 1981], workload history [Matthews, 1986], choice of presentation

symbology [Remington and Williams, 1986], contrast, luminance, display duration

[Teichner and Krebs, 1972], and size [Teichner and Krebs, 1972; Bloomfield, 1972].

Morawski et al (1980) and Arani et al (1984) propose general quantitative models designed

to predict search times under varying search constraints and conditions.

Zeki (1978) provides physiological data supporting the notion of functional parallelism in

visual search. Zeki argues that different areas of the visual cortex process different

perceptual stimuli and that these processes can occur simultaneously at a single location.

Eriksen and Hale (1955) showed that visual search could be expedited by using shape and

color to redundantly encode a single dimension of information. This result suggested that

visual search could simultaneously exploit spatial and functional parallelism. That is,

several different perceptual operators could be applied simultaneously at multiple locations

in a presentation. This hypothesis was later rejected in studies by Treisman (1977) and

14

Treisman and Gelade (1980) who showed that participants were unable to pre-attentively

locate a target object having two unique perceptual properties.

Gould and Schaffer (1967) studied the effects of divided attention when monitoring

multiple presentations. Results showed that participants could successfully monitor up to

sixteen different presentations without a decrease in monitoring performance as long as the

rate of change for each presentation did not exceed some threshold.

Highlighting/Luminance. Goldstein and Lamb (1967) investigated the use of single-

color flashing lights to encode messages in a naval application. Results showed that

participants were able to easily master a set of four messages when flash rate was used to

encode the message.

Smith and Goodwin (1971) used blink coding to mark target objects in a computer display.

Results showed that search time was fifty percent faster when target objects blinked at a 3

Hz rate. The data suggested no such savings when simple (non-blinking) highlighting was

used. Smith and Goodwin (1972) demonstrated that this result did not hold in a text

reading task indicating that the usefulness of blinking was task-dependent.

Teichner and Krebs (1972) studied the effects of luminance, duration, and area of objects

in a presentation on visual detection performance. Results suggested a reciprocity between

duration and luminance for small areas but no such relationship between luminance and

area.

Fisher and Tan (1989) introduced qualifications on the successful use of highlighting in

presentations. Results suggested that the utility of highlighting is a function of the type of

highlighting, the descriptiveness of the highlighting, and the probability that users of the

presentation will first attend to highlighted items. Fowler and Barker (1974) studied the

15

effect of highlighting in textbooks on college students’ retention of text material. While no

general benefits of highlighting were found, the results suggested that highlighting

improved retention of selected text material. Highlighting was found to be most effective

when readers believed that the highlighting discriminated between important and trivial

information.

Color. Christ (1975) and Davidoff (1987) review experimental research pertaining to the

use of color in graphic presentations. A first basic task-related advantage of using color is

its utility in decreasing search time for target objects. Green and Anderson (1956) suggest

that human capabilities for pre-attentively processing color allows search time for a target

object to be a function of the number of objects in the presentation having precisely that

color. The total number of objects in the presentation has a lesser effect [Smith, 1962,

1963; Carter and Cahill, 1979; Carter 1982, Luder and Barber, 1984]. Studies reviewed in

Christ (1975) show that color is superior to other perceptual attributes such as size, shape,

or brightness for supporting efficient pre-attentive search. The search advantages of color

coding, however, have been shown to increase with: (1) the density of a presentation

[Cahill and Carter, 1976]; (2) the number of different colors used in the presentation

[Smith, 1962; Cahill and Carter, 1976]; (3) the randomness of the spatial layout of the

objects in a presentation [Farmer and Taylor, 1980]; and (4) the difficulty of discrimination

between colors [Farmer and Taylor, 1980; Carter, 1982]. Shontz et al (1971) and Luder

and Barber (1984) report decreases in search time when color was used to redundantly

encode information in a presentation. Kanarick and Petersen (1971) and Saenz and Riche

(1974) found redundant color coding to be of no use in reducing overall search time but

that it sometimes made possible other visual search strategies. These conflicting results

suggest that the usefulness of color coding is a function of the details of the task that it is

being used to support. Konz and Koe (1969) provides additional evidence of the task-

related nature of the utility of color coding. Konz and Koe, in an alphabetic name card

filing task, found that cards were filed most quickly when the second letter of each name

16

was color coded. No advantages were associated with encoding the first letter of the

names.

Ware and Beatty (1988) investigated the use of the three primary colors (e.g., the red,

green, and blue primaries of the television monitor) to simultaneously encode three separate

discrete data dimensions in contrast to the usual strategy of mapping non-primary colors in

a color space to the data values in a single data dimension. Participants viewed scatter plots

representing five dimensions of information: two dimensions represented by the x and y

coordinates of each point in the plane, the other three dimensions encoded using the three

primary colors that together comprised the overall color of each point. In a first

experiment, participants were asked to determine the presence of clusters, or collections of

points agreeing along all five data (perceptual) dimensions. Response accuracy was the

dependent measure. Results indicate that the use of color is reliably advantageous for this

experimental task. Two further experiments measured participants’ ability to make cluster

judgements as each of the five perceptual dimensions were systematically varied, covering

the complete space of possible color scatter plots. Results showed that in well distributed

data sets the utility of the three-dimensional color coding appears as good as other encoding

schemes that employ other perceptual dimensions. For data sets in which only the color

dimensions vary (all points spatially clustered together), the usefulness of color decreases.

The authors did not investigate or make claims about peoples’ ability to identify constituent

primary colors or relate them to particular data values.

No good evidence is available suggesting that color coding is useful for identification tasks

[Davidoff, 1987]. Color naming tasks are especially error prone when the number of

permissible colors is greater than three or four [Luder and Barber, 1984; Zwaga and

Duijnhouwer, 1984]. Also, difficulty of discrimination between colors increases with the

number of colors used [Bundesen and Pedersen, 1983]. Behan et al (1972) studied the

problem of underwater color perception. Color also appears to impair the accuracy of size

17

and shape judgments when the size and shape discriminations are themselves difficult

[Morgan and Alluisi, 1967]. Cuff (1973) observed that since color is actually composed of

three perceptual dimensions (e.g., intensity, hue, and saturation), color-encoded data was

often misread when more than one dimension was varied. Garner (1974) later showed that

hue and saturation are integral perceptual dimensions. Integral perceptual dimensions

cannot be perceived by humans independently of one another. Perceptual dimensions that

can be perceived independently are called separable. For example, color and shape are

separable dimensions [Garner and Felfoldy, 1970].

Studies of memory for color offer little support for the advantages of using color for short-

term or long-term information retention. Studies show color to be less useful when short-

term memory loads become high [Wedell and Alden, 1973] and of the same utility under

low short-term memory demands [Alden et al, 1971]. In these cases, spatial or verbal

codes are preferred. For long-term memory tasks, it appears that color information is re-

encoded verbally [Paivio and te Linde, 1980]. Colors appear to be best remembered when

color names are attached to them upon stimulus onset [Hendrick et al, 1968]. Loftus

(1977), in a study of eyewitness testimony, showed that memory for the color of an object

can be contaminated when participants are exposed to misleading verbal information about

the color of that object.

Albers (1963) demonstrates the effect known as color interaction that occurs when objects

of one color are embedded within objects of another color. Color interaction can produce

two interesting context-sensitive effects: (1) identical colors may seem different; and (2)

different colors may seem identical. Tufte (1990) gives an example of each of the two

color interaction effects (pp. 92-93).

Shading. Shading offers many of the same search advantages as does color. One

important difference between shading and color is that, since shading consists of a single

18

dimension (luminance or grey scale) there are fewer distinguishable shades than there are

distinguishable colors. Hence, the number of categories that can be encoded with shading

is somewhat smaller. Other issues complicate the use of shading. It is a well known

phenomenon of psychophysics that perception of equal grades of darkness do not coincide

with equal grades of ink/area. Williams (1956) proposed a grey scale whose increments

were claimed to agree with peoples’ grey scale judgements. Participants in a study by

Jenks and Knos (1961) compared five different grey scales, one of them anonymously the

Williams scale, and decided that the Williams scale was the most reliable. Jenks and Knos

further add that varying certain characteristics of the texture used in a shaded region, such

as size and arrangement of dots, can cause shades to appear out of order. Consequently,

care must be taken when texture is used together with shading.

Texture. Julesz (1981) investigated participants’ ability to pre-attentively process texture

when used as a data-encoding perceptual dimension. Julesz found that certain types of

textures composed of elements called textons could mediate pre-attentive processing.

Julesz’s textons include color, elongated shapes of specific sizes, and orientations. Since

the textons described by Julesz are themselves perceptual dimensions that have been shown

to have pre-attentive processing properties (i.e., indexable), these results are consistent

with Neisser’s earlier observation that some perceptual dimensions enjoy indexing

properties when perceptually treated as other dimensions understood to be indexable.

Size . Bloomfield (1972) demonstrated that the time to locate an object in a presentation is

in general inversely proportional to the size of that object. Teghtsoonian (1965) studied the

accuracy to which participants performed area judgements. Teghtsoonian found area

judgements to be reliably erroneous. The result of Teghtsoonian’s study was to propose a

correction formula that could be applied to any graphic that used area to encode quantities.

The correction formula states that the perceived area is typically the actual area raised to a

power of 0.8. Stevens (1974) describes a similar formula that can be applied to lengths

19

and volumes as well as areas. The length and volume correction formulas are identical to

Teghtsoonian’s formula excepting the exponent which is {0.9 ~ 1.1} for length judgements

and {0.5 ~ 0.8} for volume judgements. Stevens reviews a previous formula known as

Weber’s Law which specifies a quantity that must be added to a physical magnitude in

order to insure that accuracy of judgement occurs with a given probability, p. Flannery

(1956) studied errors made in area and diameter judgements for circles. Flannery found

regularity in the errors in both types of judgements and proposed a correction formula for

circles similar to Stevens’ Law.

Luria and Kinney (1970) and Vernoy (1989) studied the problem of underwater perception

of size and distance when a diving mask is worn. Divers typically overestimate the size of

unknown objects and underestimate the distance to these objects. Correction formulae are

proposed by the studies.

Shape. Studies of visual search suggest that some characteristics of shape are perceived

pre-attentively. For example, Neisser (1964) showed that participants could identify letters

and words pre-attentively based on the shape of the word. Although the relevant shape

characteristics cannot be positively identified from the existing data, three characteristics

have been proposed in Ullman (1984): (a) curvature; (b) orientation; and (c) number of

terminating points. Larsen and Bundesen (1978) demonstrated that search time for

matching shapes within a figure increased linearly when the size or scale of one object in

the matched pair was increased (preserving shape).

Icons. Macdonald-Ross (1977) and Barnard and Marcel (1987) review research

pertaining to the use of icons. A notion central to all theories of icons recognition is that the

recognition process invokes real-world knowledge [Marr and Nishihara, 1978]. Barnard

and Marcel point out that abstract icons may invoke conceptual-level referents while more

realistic icons may invoke knowledge about specific instances. They also point out two

20

important limitations on the use of icons. First, the interpretation of icons may differ

widely among occupations or cultures [Cahill, 1976; Neurath, 1936; Hudson, 1968].

Second, many abstract concepts have no natural depictive form (e.g., sound, logical

relationships). Easterby (1970) found that increasing the amount of detail in a set of icons

used to represent machine parts did little to enhance machinists’ ability to recognize the

symbols.

Pictorial charts use icons to represent a set of entities and quantitative facts pertaining to the

entities. Brinton (1916) introduced the simple technique of encoding quantitative attributes

of an entity by varying the size of the icon used to represent that entity. Neurath (1936)

flagged this convention as erroneously interpretable and suggested that multiple instances

of an icon be used to encode quantities. Neurath (1944) pointed out several other issues

pertaining to interpretation accuracy such as horizontal and vertical alignment of icons, and

how different alignments could entice readers into drawing different inferences.

Macdonald-Ross (1977) extensively reviews the development of the pictorial chart.

Connectivity. Krohn (1983) studied subjects’ performance time and accuracy when

flowcharts were used to support a decision task. The directional orientation, the number of

alternatives leading from each decision box, and the decision task complexity were

manipulated as independent variables. The results showed that performance was best when

flowcharts were oriented consistently with reading patterns (left to right). The number of

alternatives issuing from each decision box had no effect on performance.

Tables. Ehrenberg (1975) and Chakrapani and Ehrenberg (1976) informally studied the

use of tabular presentations to support information-processing tasks. These studies

propose the following set of simple design principles that can help improve the

effectiveness of a table:

1. Round numbers to two significant digits to facilitate mental arithmetic.

21

2. Provide row and column averages.
3. Column comparisons are performed more easily so use columns for the most

important comparisons.
4. Order rows and columns by size of of numbers, not by alphabetical order of labels.
5. Columns and rows should be compactly set, not spaced out in order to fill the page.

Note that the design principles are sensitive to the types of cognitive design issues

addressed in this dissertation, namely, reducing mental computation and streamlining visual

search. Efficacies of principles 2 and 4, however, may only coincidentally occur when the

table is used for a task that makes use of row and column averages, or that requires the user

to search for particular attribute (column) values. Principles 2 and 4 may work against the

user when performing tasks that use other types of quantities or that require the user to

search on row elements.

Wright (1968, 1972) conducted a number of experiments concerned with differences in

accuracy of interpretation between tables and graphs. A long-standing criticism of graphics

was that readers would often make mistakes when looking up data values. Proponents of

this argument suggested that tables be used whenever accuracy was important [Brinton,

1939; Tufte, 1983]. Wright’s work with tables demonstrated an important phenomenon

that caused the “tables-for-accuracy” argument to be qualified. Wright summarizes her

results as follows:

“If the user of a table is required to carry out operations other than search and read,
the number of competent users is markedly reduced. Tabulation schemes requiring
synthetic or analytic operations by the user seem to buy economy of space at the
cost of comprehension [Wright, 1973].”

2.4.2 Studies of Complex Task Performance Using Graphics

Investigators in Human Factors and Management Information Systems (MIS) have studied

the use of graphics as an aid to the performance of complex information-processing tasks.

Complex tasks involve the performance of many primitive perceptual tasks such as those

discussed in the previous section. The goal of these studies is to establish the utility of

22

graphic presentations as tools to support information-processing and decision-making

tasks. The studies have largely failed to accomplish this goal, reporting mixed and often

contradictory results. One reason for these mixed results may be the lack of consistency

among the experimental methods used. Inconsistency among methods makes

generalizations of individual results difficult, and comparisons between studies less

meaningful. Methodological inconsistencies among studies occur in at least six forms.

First, there is no general agreement as to what dependent measures are important when

testing users’ performance with graphics. Two popular choices are: (1) task performance

time; and (2) accuracy. Studies typically choose one or the other but seldom measure both.

Second, experimental procedures frequently differ in the instructions given to participants.

A basic problem arises with this inconsistency in terms of the speed-accuracy trade-off in

subjects’ task performance. Subjects who are told that they are being timed often trade

away accuracy for the purpose of completing the task more quickly. This makes accuracy

measurements difficult to compare. Subjects who are told to strive for accuracy often use

more time than necessary, sometimes reviewing their work several times before reporting

an answer. Subjects who are told to maximize both time and accuracy may exhibit

performance characteristics different from any group. Third, some studies include a task

analysis describing in detail the activities that the participants are likely to be performing

while being measured [Lusk and Kersnick, 1979]. Drawing strong conclusions from data

is often risky when an understanding of the procedure that participants followed is not

available [Newell, 1973]. Fourth, very few studies include an analysis of the presentation

that participants use to perform the experimental task [Lusk and Kersnick, 1979]. A basic

assumption underlying these studies is that the features of a presentation can effect users’

performance yet few studies pay any attention to the features of the particular presentations

they test. Some studies do not even provide the reader with examples of the experimental

graphics used [Dickson et al, 1986]. Fifth, some studies attempt to control the level of user

skill or practice with the experimental task or stimulus materials used. A common

technique for measuring individual differences is the Embedded Figures Test which has

23

been argued to correlate well with spatial ability [Witkin et al, 1971]. More recent studies

use pre-tests to determine participants’ prior knowledge of the subject matter [Hegarty and

Just, 1988].5 When no attempt is made to measure individual differences in skill or

knowledge it should seldom be surprising that a person having experience with a particular

presentation should outperform another person using a presentation that is unfamiliar to

them. Sixth, and most important, many studies are inconsistent in the conclusions they

reach. Many studies find tabular presentations of a particular type of information to be

superior, while others find no significant differences, while still other find graphics to be

superior. The implications of this finding are discussed below.

Cleveland and McGill (1984) tested the accuracy to which subjects were able to perform a

simple information extraction task when data values were encoded using each of the

perceptual dimensions. Information was encoded in separate graphic presentations, each

presentation using a single perceptual dimension such as shape, color, size, spatial

position, etc. Participants’ accuracy scores were used to rank the perceptual dimensions in

order of their observed interpretation accuracy. The rankings were used as a means of

explaining why some graphics appear to be more successful than others, namely because

they use more accurately interpreted perceptual dimensions.

Lusk and Kersnick (1979) investigated the effect of presentation format on task

performance accuracy from a task-analytic perspective. Participants answered twenty

questions using two different presentation formats: tables and graphs. For each

combination of presentation format and question, the set of problem-solving operators

required to answer the question was enumerated. Response accuracy was the dependent

measure. Lusk and Kersnick found that in no case did the use of a graphic significantly

improve task performance over a tabular presentation of the same information.

5 Other pre-tests are sometimes used to insure normal or corrected vision [Clancey and Hoyer, 1987], and
accuracy of color perception [Ware and Beatty, 1988].

24

Lucas (1981) asked participants to perform a decision task using alternative tabular and

graphic presentations. Response accuracy was the dependent measure. No detailed

analysis was performed on either the task or the presentations. Lucas found that

participants performed better with graphic presentations than with tabular presentations

appearing on the computer screen. Surprisingly, participants performed best of all using

hard copy tabular presentations (unfortunately, hard copy graphics were not tested)!

Tullis (1981) asked telephone company employees to use four different presentations of

information about diagnostic test results performed on a telephone line. The four

presentations were: (1) a narrative description of the test results; (2) a structured text

(tabular) presentation; (3) a black-and-white graphic presentation; and (4) a color graphic

presentation. The experimental task was duplicated in two separate sessions to investigate

the effects of practice. Task performance times did not differ significantly between any two

conditions for the first session. Significant differences were observed between structured

and narrative texts during the second session. In no case did a graphic result in superior

performance over the structured text.

Dickson, DeSanctis, and McBride (1986) conducted three experiments to test the effect of

presentation format on readability, interpretation accuracy, and decision quality. The first

experiment compared tabular and bar chart presentations for a set of simple information

extraction and comparison task. Results indicated no significant differences between the

two presentations. The second experiment showed line graphs superior to tables for a

more sophisticated decision task. The third experiment showed that graphics were better

for communicating a “message” with data when the message was simple. The authors

draw three conclusions: (1) “generalized claims of superiority of graphic presentations are

unsupported;” (2) “the effectiveness of the data presentation format is largely a function of

the characteristics of the task at hand;” and (3) “impressions gleaned from one-shot studies

25

of the effectiveness of the use of graphs may be nothing more than situationally dependent

artifacts.

Benbasat, Dexter, and Todd (1986) studied participants’ performance on the Brand

Manager’s Allocation Problem (a well understood experimental MIS task) using tabular,

graphic, and combined tabular and graphic presentations. The dependent measures were

response time and decision quality. Results showed that the use of color graphics led to a

ten percent improvement in decision quality but no significant difference in response time.

No explicit instructions were given to participants indicating the relative importance of

decision time vs. decision quality.

Benbasat and Dexter (1986) studied the effect of presentation format on task performance

time and decision quality under varying time constraints. Participants used tabular,

graphic, and combined tabular and graphic presentations to perform the Brand Manager’s

Allocation Problem under five and fifteen minute time constraints. Participants were given

no explanation of the relative importance of performance time and accuracy. For the fifteen

minute treatment, the color graphic presentation group completed the task more quickly

than any other group but showed significantly lower decision quality than the combined

table/graphic group. For the five minute treatment, no significant differences were found

among presentation format for performance time but the combined table/graphic group

produced significantly better decisions. Participants’ answered ten questions in evaluation

of the different presentations and decided that the combined table/graphic presentation was

superior.

Benbasat et al (1986) conducted a less rigorous study of the use of color in presentations of

information used for managerial decision-making tasks. The authors conclude that color is

primarily useful in the early stages of a decision task and when time constraints are

introduced. However, these results have little explanatory power and it is possible that

26

more detailed analyses such as those reviewed in Davidoff (1987) can account for the

observations more concretely.

Other interesting studies address the use of graphic presentations in analogical reasoning

[Beveridge and Parkins, 1987], the utility of flowcharts for understanding procedural

instructions [Kammann, 1975; Krohn, 1983], the use of maps for terrain visualization

[Barsam and Simutis, 1984], the use of face caricatures to encode data dimensions [Jacob

et al, 1976], the use of holograms as training and job aids [Frey and Eichert, 1978], and

the use of Gantt charts in job-shop scheduling [Gibson and Laios, 1978].

Jarvenpaa and Dickson (1988) review the findings of thirty-three independent studies that

assess the utility of graphics, including the MIS studies discussed above. Jarvenpaa and

Dickson show that sorting the studies in a tables vs. graphics fashion yields two groups of

commensurate size, one concluding that tables are superior, the other arguing for graphics.

It is suggested that some other criteria is needed to explain the mixed results. A criteria is

introduced that additionally considers the nature of the task for which a presentation is used

to support. A preliminary, coarse-grained classification of task types is proposed. This

informal model accounts for some but not a significant amount of the variance between

studies. The authors make two recommendations. First, future studies should adopt a

more fine-grained task focus and a more serious taxonomic study of task types or task

characteristics must be undertaken. Second, “the results of any graphics study can be

interpreted solely as a function of the task,” and that “extrapolation of results in one task

activity with those of another is inappropriate unless the researcher also considers the

characteristics of each task.”

Figure 10 graphically summarizes important characteristics of the reviewed MIS studies of

graphic presentation utility for complex information-processing tasks.2

2A shaded entry in the columns for TASK ANALYSIS, DISPLAY ANALYSIS, and INDIVIDUAL
DIFFERENCES in Figure 10 indicate a “no” value, unshaded entries indicate “yes.”

27

Figure 10: Experimental Studies of Complex Task Performance.

2.5 Information-Processing Models of Graphic Design and Use

Larkin and Simon’s work [23] was first to study the utility of graphics from a cognitive

science perspective. Larkin and Simon built detailed cognitive simulations of human task

performance, each simulation performing a task using informationally equivalent logical

and graphic representations of a set of data. Larkin and Simon’s analysis yielded two

general ways in which graphic presentation-based procedures could be performed more

efficiently by humans: (1) by allowing users to substitute quick perceptual operators for

more demanding logical operators; and (2) by reducing search for needed information.

Several more recent studies have investigated other cognitive utilities of graphic

presentations. Hegarty and Just (1988) studied the use of realistic diagrams in

understanding complex machines. Fallside (1988) investigated how learners make use of

animated diagrams when understanding complex machines. Koedinger and Anderson’s

work (in press) suggests that students are better able to learn and apply the rules of

28

geometry when the rules are explained to them in terms of the way they can be applied to

particular configurations of lines and angles in geometry diagrams.

Ohlsson (1987) devised three interactive illustrations used for teaching proportional

reasoning concepts to children. Ohlsson formally analyzed the mathematical objects and

operations pertaining to proportional reasoning tasks and devised a graphic presentation

and set of perceptual inferences and graphical manipulations that formally correspond to the

proportional reasoning concepts. Maintaining one-to-one correspondences between the

graphical activities performed using the interactive presentations and the math concepts to

be learned allows children to explore the semantics of abstract mathematical concepts using

concrete examples before learning the details of an abstract formalism and notation.

Ohlsson’s idea of designing presentations that feature correspondences between formal

mathematical reasoning steps and perceptual and graphical operations performed using a

graphic presentation is central to the research described in this dissertation.

Goldenberg (1988) conducted informal studies of differences in interpretation of function

graphs between mathematically naive students and mathematically knowledgeable adults.

Goldenberg argues that the interpretation of a graph is a function of the specific

mathematical knowledge and procedures that the user of the graph possesses. Three

implications follow from this argument: (1) it is a false assumption that graphs of functions

are inherently more accessible to students than other types of representations; (2)

thoughtless use of graphs in instruction may serve to obscure mathematical concepts that

are already difficult to teach; and (3) graphics that benefit from a close consideration of

students’ knowledge and instructional goals may help students access mathematical

concepts obscured by cumbersome notations. Goldenberg (1989) outlines a graphic-based

cirriculum for teaching mathematics concepts through the use of fractal diagrams.

29

2.6 Conclusions

The related research findings serve to corroborate three basic points made in the

Introduction.

(1) The utility of any presentation of information is a function of the task for which that

information is to be used.

“In fact, the experiments suggest that the effectiveness of the data presentation
format is largely a function of the characteristics of the task at hand [Dickson et
al, 1986].”

(2) The design of any presentation of information should begin with a consideration of

the task to be supported. Decisions about how to encode information in the

presentation should be focused on choosing those conventions that best support the

specific activities that the user must perform. Design criteria should be as articulate and

formal as possible.

“One way to systematically develop a program of empirical research is to
consider how one would program a computer to emulate an expert human graph
designer [Kosslyn, 1985]”

“The benefits of graphics are limited to reducing decision making time but only
when the graphical report has been designed to directly assist in solving the task
[Benbasat et al, 1986].”

“We submit that the guidelines must take into account the nature of the task
supported. Several graphics experiments over the years have provided support
for this contention that the effectiveness of an information presentation is highly
dependent on, or sensitive to, the task being performed [Jarvenpaa and
Dickson, 1988].”

“The nature of the task to be performed with a graphic presentation is critical for
decisions concerning the use of colour [Davidoff, 1987].”

(3) Empirical studies that attempt to establish the utility of a presentation format must

explicitly take into account the experimental task performed and the particular

presentations used.

“... we should look for more attention to the purpose of the graphic device,
better quality stimulus materials, and better definition of the target audience
[Macdonald-Ross, 1977].”

“(1) the results of any graphics study can be interpreted solely as a function of
the task, and, (2) any comparison or, (3) extrapolation of results in one task

30

activity with those in another is inappropriate unless the research also considers
the characteristics of each task [Jarvenpaa and Dickson, 1988].”

1

CHAPTER 3

TASK-ANALYTIC DESIGN OF GRAPHIC PRESENTATIONS:

AN AUTOMATED APPROACH

This chapter describes BOZ, an automated graphic design and presentation system that

creates graphic presentations of information customized to the requirements of specific

tasks. BOZ works by analyzing the information-processing tasks that information

presentations are needed to support. BOZ’s task-analytic approach makes direct use of the

theoretical advantages of graphic presentations developed in Chapter 1. Figure 11

illustrates BOZ’s basic functionality.

Graphic
Presentation

Perceptual
Procedure

BOZ

A User
Task

Information
Needed for
Task

121, 283,392,

398,293,823,
453,384,203,

394,382,384

Figure 11: Overview of BOZ

BOZ requires two things as input: (1) a description of a task to be performed by a human

user without the benefit of a graphic presentation; and (2) the information that the user will

need to complete the task. Descriptions of tasks and information must presently be

prepared by hand in advance and submitted to BOZ. BOZ produces two things as output:

(1) a graphic presentation that best supports the task; and (2) a set of instructions indicating

2

how to use the graphic presentation to successfully complete the task. This set of

instructions takes the form of a step-by-step description of the perceptual inferences the

user must perform when doing the task. In this manner BOZ attempts to design an efficient

perceptual way of allowing the user to obtain the same results achievable via performance

of the original task. Stated another way, given a representation-independent description of

a task, BOZ searches a space of graphical representation schemes looking for ways to

instantiate the generalized task within the context of a particular graphic presentation. BOZ

attempts to single out that particular graphic design that affords the user the opportunity to

accomplish the task in the most efficient way.

A logical task description language allows the user of BOZ (e.g., interface designer,

cognitive scientist, etc.) to describe the information-processing task that s/he wishes to

design a graphic presentation to support. This language is used to enumerate the individual

problem-solving steps (logical operators) that are required for a user to complete a task

without the benefit of any information display.

A perceptual operator substitution component considers each operator in a logical

task description looking for way to substitute perceptual operators in place of logical

operators when the operators can be shown to produce the same output given the same

input. BOZ contains a catalog of perceptual operators describing problem-solving steps

performed within the context of a graphic. Perceptual operator substitution is the

mechanism used to reduce the amount of mental computation performed by the human user

when performing a task. Several perceptual operators typically qualify as substitutes for

each logical operator, yielding a set of possible perceptual procedures.

A perceptual data structuring component examines the information manipulated by

each logical operator and determines how information shared by several operators should

be collected together to form complex graphical objects, and how unrelated information can

3

be partitioned into distinct presentations. Perceptual data structuring is one mechanism

used to minimize the amount of time the user spends searching for information in a graphic.

The perceptual data structuring component determines the optimal grouping and distribution

of information within a graphic. The perceptual data structuring component does not

determine how the information is to be graphically encoded in the presentation.

A perceptual operator selection component chooses a single perceptual operator to

substitute each logical operator in a task description thus arriving at a single perceptual

procedure to be performed by the user. The first criteria for perceptual operator selection is

how efficiently and accurately each perceptual operator is likely to be performed by human

users. Selecting each particular perceptual operator also decides the way that the

information manipulated by that operator (and related operators) must be graphically

encoded in a presentation. A second criteria for operator selection is choosing a complete

set of perceptual operators that results in a set of graphical encodings that can be combined

according to the specification produced by the perceptual data structuring component. The

results of applying the perceptual operator selection component are detailed descriptions of

a single perceptual procedure and an accompanying graphic design that supports the

performance of the perceptual procedure.

A graphic presentation rendering component translates logical facts into graphical

facts and displays them on the computer screen in the format specified by the graphic

design produced by BOZ.

The remainder of this chapter describes BOZ’s automated graphic design approach in

detail. To help illustrate how BOZ works, a running example will be developed throughout

the discussion. The running example further shows how BOZ can be used to analyze a

real-world task and design a perceptual procedure and accompanying graphic presentation

that help users accomplish the same task more easily. In the example, a graphic

4

presentation will be designed to support the following task pertaining to making a

reservation on an airline flight:

Find a pair of connecting flights that travel from Pittsburgh to Mexico City. You

are free to choose any intermediate city as long as the layover in that city is no more

than four hours. Both flights that you choose must be available. The combined

cost of the flights cannot exceed $500. Find an empty seat on each flight.

3.1 Logical Task Description Language

The first component of the task-based design methodology is a means of making explicit

the information-processing activities that a graphic presentation is needed to support.

Several task description languages exist in the literature, two of them targeted specifically

for use in designing user interfaces [Payne and Green, 1986; Card, Moran and Newell,

1983]. Given the particular use of a task description language intended here, two issues

guided the decision to build a new task language over choosing one of the existing

techniques. First, the task language should be executable. Task languages such as TAG

[Payne and Green, 1986] and GOMS [Card, Moran, and Newell, 1983] require that the

designer manipulate the formalism by hand. If the designer wishes to build a working

simulation of a task, the task description must be re-encoded using a second formalism

such as a production rule language.1 Second, the specific features of other task languages

do not map well onto BOZ’s task specification requirements. For example, GOMS

contains a mechanism for describing how users choose which operators to apply when

performing a procedure, or which procedure to apply to a given task (i.e., selection rules),

an issue not addressed by BOZ. An important feature missing in GOMS and ETAG is a

notation powerful enough to describe the domain sets of information manipulated by a task.

1Chapter 4 shows how logical procedures described using the task language and perceptual procedures
derived using the perceptual procedure derivation algorithm can be directly used as simulations (requiring no
human intervention) for generating quantitative predictions about the utility of a presentation with respect
to a task.

5

BOZ’s task description language contains two basic components: (a) a notation for

describing logical procedures; and (b) a notation for expressing relational information

manipulated by a logical procedure.

Logical procedure definitions are similar to programs in conventional programming

languages such as Pascal. Every logical procedure contains two parts: (a) a set of logical

operator definitions; and (b) a main body. A logical operator (LOP) is composed of an

operator name, a list of arguments taken as input to the operator, and a single relation that

the operator computes. Logical operators occur in two forms. A search operator uses one

of the three meta-commands: ASK, TELL, and RETRACT to query, assert, and remove logical

facts from a simple database of logical facts. Relational facts contain a single predicate

followed by any number of arguments. Predicates describe relations between two or more

logical arguments. Arguments are variables that can be assigned relational values drawn

from the collection of domain sets (explained below) defined for a task. In LOP

definitions, arguments are indicated by the name of a domain set enclosed in brackets (i.e.,

“< >”). Arguments may be instantiated or uninstantiated. Uninstantiated arguments, i.e.,

variables that have not yet been assigned a value, are capitalized. Instantiated arguments

are variables that were previously uninstantiated but have since been assigned a relational

value. Instantiated arguments appear in lower case. Note that the same argument may be

uninstantiated in one clause, be assigned a value, and appear in lower-case form (i.e.,

instantiated) in a later clause. A computation operator describes a computation performed

on a set of logical arguments using one of a set of pre-defined arithmetic or logical

functions such as PLUS, DIFFERENCE, TIMES, QUOTIENT, AND, OR, NOT, etc. Note

that only instantiated arguments may appear in a computation operator.

The following example describes two logical operators in the airline reservation procedure.

The two operators determine the departure time of an airline flight (search operator), and

the layover between two flights (computation operator), respectively:
(NLAMBDA determineDeparture (<flight> <DEPARTURE>)

6

(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA computeLayover (<departure> <arrival> <LAYOVER>)
(DIFFERENCE <departure> <arrival> <LAYOVER>))

The key word NLAMBDA is used to denote a logical operator. The lists (flight

DEPARTURE) and (departure arrival LAYOVER) are the sets of arguments that

the two operators receive as input. The ASK predicate states that a list of facts should be

checked to see if the predicate that follows can be shown to be true: namely if there exist a

fact expressing the departure time of the flight. The clause (DIFFERENCE departure

arrival) specifies that the pre-defined subtraction function is to be computed given the

values departure and arrival, and the variable LAYOVER is to be instantiated with

the result.

The main body of a logical procedure is an ordered sequence of calls to the set of defined

logical operators. To express control information, the main body of a logical procedure

may additionally contain any of the following control constructs: while-do, for, repeat-

until, and if-then.

To illustrate the use of the task language, Figure 12 shows a complete procedure

description for the airline reservation task.

7

(TASK airlineReservation

(DOMAINSETS
(flight NOMINAL 50)
(origin NOMINAL (pit hou dal ord alb mex gdl qto paz bga))
(destination NOMINAL (pit hou dal ord alb mex gdl qto paz bga))
(departure QUANTITATIVE 100)
(arrival QUANTITATIVE 100)
(layover (departure arrival))
(cost QUANTITATIVE 500)
(availability NOMINAL (ok full))
(seat NOMINAL 7200)
(seatnumber ORDINAL (1A 1B 1C 1D 1E 1F ... 24A 24B 24C 24D 24E 24F))

(LOPS
(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA findDestination (<flight> <DESTINATION>)
(ASK (Destination <flight> <DESTINTATION>)))

(NLAMBDA landsInDestinationCity? (<destination> <destination>)
(EQUAL <destination> <destination>)))

(NLAMBDA available? (<flight>)
(ASK (Availability <flight>)))

(NLAMBDA determineDeparture (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA determineArrival (<flight> <ARRIVAL>)
(ASK (Arrival <flight> <ARRIVAL>)))

(NLAMBDA computeLayover (<departure> <arrival> <LAYOVER>)
(DIFFERENCE <departure> <arrival> <LAYOVER>))

(NLAMBDA connecting? (<departure> <arrival>)
(GREATERP <departure> <arrival>))

(NLAMBDA layoverLessThanX? (<layover> <layover>)
(LESSP <layover> <layover>))

(NLAMBDA determineCost (<flight> <COST>)
(ASK (Cost <flight> <COST>)))

(NLAMBDA addCosts (<cost> <cost> <COST>)
(PLUS <cost> <cost> <COST>))

(NLAMBDA costLessThanX? (<cost> <cost>)
(LESSP <cost> <cost>))

(NLAMBDA findSeat (<flight> <SEAT>)
(ASK (Seat <flight> <SEAT>)))

(NLAMBDA emptySeat? (<seat> <availability>)
(ASK (Availability <seat> <availability>)))

(NLAMBDA findSeatNumber (<seat> <SEATNUMBER>)
(ASK (Seatnumber <seat> <SEATNUMBER>)))

(PROCEDURE
(while (findFlightWithOrigin FLIGHT 'pit) do
(if (available? flight) then
(findDestination flight LAYOVERCITY)
(determineArrival flight ARRIVAL)
(while (findFlightWithOrigin CONNECTING layovercity) do

(if (available? connecting) then
(findDestination flight FINALDESTINATION)
(if (landsInDestinationCity? finaldestination 'mex) then
(determineDeparture connecting DEPARTURE)
(computeLayover departure arrival LAYOVER)
(if (and (connecting? departure arrival)

(layoverLessThan4? layover)) then
(determineCost flight COST1)
(determineCost connecting COST2)

8

(addCosts cost1 cost2 TOTAL)
(if (lessThan500? total) then
(repeat
(findSeat flight SEAT1)

(until (emptySeat? seat1)))
(findSeatNumber seat1 SEATNUM1)
(repeat
(findSeat connecting SEAT2)

(until (emptySeat? seat2)
(findSeatNumber seat2 SEATNUM2)]

Figure 12: Logical Airline Reservation Procedure

Logical facts are used to describe relational information manipulated by a logical

procedure. Logical facts state relations between values drawn from one or more domain

sets. Domain sets are the information types that define the universe of discourse for a task.

Domain sets associate a name, a type of information, and a (possibly infinite) set of data

values of that type that can appear in a logical fact. Three types of domain sets are allowed

in the present version of BOZ: quantitative, nominal and ordinal [Stevens, 1946].

The airline reservation procedure manipulates information from the domain sets specified in

the top portion of Figure 12. Figure 13 shows a set of logical facts that describe two airline

flights.2

(flight flight117)
(flight flight239)
(origin flight117 pit)
(origin flight239 pit)
(destination flight117 hou)
(destination flight239 alb)
(availability flight117 ok)
(availability flight239 ok)
(cost flight117 179)
(cost flight239 219)
(departure flight117 10)
(departure flight239 8)
(arrival flight117 12.83)
(arrival flight239 12)

(seat flight117 seat001)
(seat flight117 seat002)
.
.
.
(seatnumber seat001 1A)
(seatnumber seat002 1B)
.
.
.
(availability seat001 ok)
(availability seat002 full)
.
.

Figure 13: Factbase for the Airline Reservation Task

2 The complete list of seats for the flights is quite voluminous and is abbreviated here.

9

3.2 Perceptual Operator Substitution

Perceptual operator substitution is the technique used to insure that a graphical display best

exploits the first task-specific advantage of graphics: that users can substitute efficiently

performed perceptual inferences in place of more demanding logical inferences. The

perceptual operator substitution component considers each logical operator appearing in a

logical task description looking for ways of substituting perceptual operators in place of

logical operators when the logical and perceptual operators can be shown to be equivalent.

The perceptual operator substitution component produces a set of perceptual operators that

can potentially serve as substitutes for each logical operator. Decisions about which

particular perceptual operator to substitute for each logical operator are subject to further

design criteria described in Section 3.4.

Perceptual operator substitution relies on two important components: a catalog of perceptual

operators that describes information-processing activities that occur within the context of a

graphical display; and a substitution algorithm that considers each logical operator in a task

and searches the catalog of perceptual operators for those perceptual operators that compute

the same function as the logical operator. Since there are often several perceptual operators

that qualify as substitutes for a logical operator, the perceptual operator substitution

component produces a set of possible perceptual procedures equivalent to the logical

procedure.

3.2.1 A Catalog of Perceptual Operators

Perceptual operators (POPs), analogous to logical operators (LOPs), characterize human

information-processing activities performed within the context of a graphic presentation and

whose performance depends on the use of a graphic presentation. Perceptual operators

describe visual computation or search performed using graphically expressed information.

For example, judging the distance between two objects in a presentation, and locating an

object having a particular color are examples of perceptual operators.

10

Perceptual operators are organized around a set of primitive graphical languages available to

the designer of a graphic presentation. Primitive graphical languages formally capture the

graphic designer’s resources for representing information graphically. The notion of a

formal graphical language is due to the work of Bertin (1983) and Mackinlay (1986). The

set of primitive graphical languages used by BOZ is shown in Table 2. The parenthesized

numbers in Table 2 indicate an upper limit on the number of distinct values that can be

practically encoded in a single graphic presentation using each primitive graphical language.

The primitive graphical languages used by BOZ are separable [Garner, 1974]. A separable

graphical language can be processed by humans independently, that is, the interpretation of

a separable language is not affected by the presence of other graphical languages. For

example, Color and Horizontal Position are separable because peoples’ ability to determine

the color of a graphical object is not affected by the horizontal position of that object. The

color of an object can be determined without attending to horizontal position, and the color

perceived is not affected by horizontal position.3

Table 2: The Primitive Graphical Languages

Horizontal Position (100)
Vertical Position (100)
Height (50)
Width (50)
Line Length (50)
Area (10)
Shading (4)
Connectivity (8)

Color (12)
Labels (∞)
Line Thickness (3)
Line Dashing (2)
Shape (5)
Visibility (2)
Tabular (∞)

Associated with each primitive graphical language is a set of perceptual operators (POPs)

that are admitted when that primitive graphical language is used to encode information in a

graphic. For example, if we elect to use the Horizontal Position language to encode

information in a graphic we admit a family of perceptual operators (POPs) such as

3Graphical languages that do affect one another are called integral graphical languages [Garner, 1974]. For
example, it is generally not possible to determine the hue of a graphical object without also determining the
saturation of that object. Again, BOZ uses separable graphical languages only.

11

determining the horizontal position of a graphical object, comparing two or more horizontal

positions, and finding the midpoint of an interval defined by two horizontal positions.

Table 3 shows the set of perceptual operators (POPs) admitted by two example primitive

graphical languages: Horizontal Position and Shading.4 It is interesting to compare the

perceptual operators associated with each primitive graphical language. This exercise helps

make explicit the task-specific usefulness of each graphical encoding technique. Note the

difference in the number of computation operators supported by the Horizontal Position

and Shading primitive graphical languages. For instance, human users can easily

determine the difference between two horizontal positions but are not generally able to

determine the difference between two shades.

Table 3: Perceptual Operators

Horizontal Position Shading
(search operators) (search operators)

determine-horz-pos determine-shade
search-object-at-horz-pos search-object-with-shade
search-any-horz-pos-object search-object-and-shade
verify-object-at-horz-pos verify-object-and-shade

(computation operators) (computation operators)
horz-coincidence? darker?
left-of? lighter?
right-of? same-shade?
horz-forward-projection
horz-backward-projection
determine-horz-distance
find-horz-midpoint

Perceptual operators are formalized using the same notation used for logical operators. For

example, the search-object-with-shade search operator and determine-

horz-distance computation operator are defined as follows:

4The perceptual operator sets associated with each primitive graphical language are not intended to be
definitive or complete as we can easily think of many additional operations that could be performed using
graphically expressed information. Rather, BOZ’s current set of perceptual operators collects together a
subset of possible perceptual inferences powerful enough to describe interesting graphic presentation-based
problem solving.

12

(NLAMBDA search-object-with-shade (<OBJECT> <shade>)
(ASK (Shading <OBJECT> <shade>)))

(NLAMBDA determine-horz-distance (<horzpos1> <horzpos2> <DISTANCE>)
(DIFFERENCE <horzpos1> <horzpos2> <DISTANCE>))

The search-object-with-shade operator searches for an object in a graphic

presentation having a shade equal to the value of <shade> and instantiates the variable

<OBJECT> with the result. The determine-horz-distance operator determines the

distance between two objects located at <horzpos1> and <horzpos2> in a graphic

presentation and instantiates the variable <DISTANCE> with the result.5

3.2.2 Substituting Operators

The formal characterization of logical and perceptual operators using equivalent notations

allows BOZ to design perceptual tasks that allow users to accomplish the same results as a

logical task submitted to BOZ as input. The ultimate goal of BOZ is to arrive at that

perceptual task that is equivalent to the original logical task, and that is most easily and

efficiently performed by human users. To design a perceptual task, BOZ considers each

logical operator (LOP) in a task description and searches the catalog of perceptual operators

attempting to locate those POPs that can serve as substitutions for each LOP in the task.

Perceptual operators can qualify as substitutions for logical operators in two ways. Simple

substitutions are those in which a single perceptual operator can be shown to produce the

same result as a logical operator. Complex substitutions are those in which two or more

perceptual operators can be packaged together using a rule for the composition of operators

to arrive at a complex perceptual operator that matches the logical operator.

Simple substitutions . A single perceptual operator qualifies as a substitution for a

logical operator if and only if the POP can be shown to be a mathematical renaming of the

LOP. The following definition formalizes the notion of simple substitution.

5Recall that upper-case arguments represent uninstantiated variables whereas lower-case arguments represent
instantiated variables.

13

Definition 1 (simple substitution): Let LOPsearch and POPsearch be

search operators defined over the sets O, A, and PGL; where O is a set of

objects, A a domain set of attributes, and PGL the discriminable values along

some perceptual dimension:

(NLAMBDA LOPsearch (o, a)
(P o a))

(NLAMBDA POPsearch (o', pgl)
(P' o' pgl))

substitution(POPsearch, LOPsearch) is true if and only if the following two conditions

hold:

(i) there exists an injection: A PGL,

(ii) the instantiations of the arguments o and o', and a and pgl match.

Let LOPcomp and POPcomp be computation operators defined over the domain

set D (or union of domain sets D = D1 U D2 ... U DN) and the discriminable

values along some perceptual dimension, PGL as follows:

(NLAMBDA LOPcomp (d1, d2, RESULT)
(F d1, d2, R))

(NLAMBDA POPcomp (pgl1, pgl2, RESULT)
(F' pgl1, pgl2, RESULT))

substitution(POPcomp, LOPcomp) is true if:

(i) there exists an injection: D PGL,

(ii) F = F'.

For example, the substitution relation holds between the following two search operators

since the argument instantiations match and we can assign a unique perceptual value (a label

in this case) to each value in the domain set ORIGIN.

(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA search-object-with-label (<OBJECT> <label>)
(ASK (Label <OBJECT> <label>)))

14

Note that the substitution relation does not hold between the findFlightWithOrigin

and search-object-with-shade operators since the number of different origins

exceeds the number of available shades (see Table 2), hence, violating condition (i).

The substitution relation holds between the following two computation operators since they

both compute the same function (i.e., DIFFERENCE), and we can construct a mapping

between the domain sets DEPARTURE and ARRIVAL and the set of unique horizontal

positions.

(NLAMBDA computeLayover (<departure> <arrival> <LAYOVER>)
(DIFFERENCE <departure> <arrival> <LAYOVER>))

(NLAMBDA determine-horz-distance (<horzpos1> <horzpos2> <DISTANCE>)
(DIFFERENCE <horzpos1> <horzpos2> <DISTANCE>))

BOZ contains an operator substitution algorithm that considers each logical operator in a

task description and locates all perceptual operators that qualify as substitutions for the

logical operator as per Definition 1. Since there is only a small number of unique functions

that the POPs in the catalog compute, BOZ categorizes the POPs in the catalog in advance

based on the function they compute. Each class of POPs contains a schema that describes

the function computed by the POPs in the class. The process of locating substitutions for

each LOP is reduced to determining the function computed by a LOP and identifying the

perceptual operator class that matches that function. Each POP in the class by definition

qualifies as a substitution for the LOP. The following definition and theorem formalize the

notion of an operator equivalence class.

Definition 2 (operator equivalence classes): An operator equivalence

class, C, is a set of operators (op1, ..., opn) such that the relation

substitution(opi, opj) holds for all i, j 1 and n. An operator equivalence

class schema, S, is an arbitrary member of C.

15

Theorem 1: Let C be an operator equivalence class and Sclass the schema for

C. If substitution(Sclass, LOP) is true then substitution(POPi, LOP) is true for

all POPi C.

Proof: Immediately from Definitions 1 and 2.

Table 4 lists twelve operator equivalence classes used to categorize the perceptual operators

in the POP catalog.

Table 4: Equivalence Classes for Perceptual Operators

SEARCH OPERATORS
search: Description: Search a list of facts for an object with a specified attribute value. Schema: (ASK

(Predicate OBJ value)).
lookup: Description: Search a list of facts about a particular object and report the value of a specified

attribute of that object. Schema: (ASK (Predicate obj VALUE)).
search and lookup: Description: Search a list of facts for any object and report the value of a specified

attribute of that object. Schema: (ASK (Predicate OBJ VALUE)).
verify: Description: Search for a fact stating that a specified object has a specified attribute value.

Schema: (ASK (Predicate obj value)).

COMPUTATION OPERATORS
equal: Description: Is one relational value equal to another? Schema: (EQUAL x y EQ).
lessthan: Description: Is one ordinal or quantitative value less than another? Schema: (LESSP x y

L).
greaterthan: Description: Is one ordinal or quantitative value greater than another? Schema:

(GREATERP x y G).
plus: Description: Computes the sum of two numbers. Schema: (PLUS x y SUM).
difference: Description: Computes the difference of two numbers. Schema: (DIFFERENCE x y

DIFF).
times : Description: Computes the product of two numbers. Schema: (TIMES x y PR).
quotient: Description: Computes the quotient of two numbers. Schema: (QUOTIENT x y Q).

Each operator equivalence class contains perceptual operators drawn from the perceptual

operator sets associated with each primitive graphical language. Table 5 shows the

perceptual operators associated with the search and subtraction equivalence classes.

These two classes group together all of the possible ways of searching for an item having a

particular attribute (search), and determining the difference between two attribute values

within the context of a graphic presentation.

16

Table 5: Members of Two Operator Equivalence Classes

search
search-object-at-horz-pos
search-object-at-vert-pos
search-object-with-height
search-object-with-width
search-line-with-length
search-object-with-area
search-connected-object
search-object-with-shading
search-object-with-color
search-object-with-label
search-connected-object
search-line-with-thickness
search-line-with-dashing
search-object-with-shape
search-table-entry

subtraction
determine-horz-distance
determine-vert-distance
determine-height-difference
determine-width-difference
determine-difference-in-line-length
determine-area-difference
subtract-labels
subtract-table-entries

Complex substitutions . The substitution component sometimes exhausts the list of

operator equivalence classes without successfully categorizing a LOP. One situation in

which this occurs is when a logical search operator contains a relation that takes more

arguments than the relations contained in any single perceptual search operator. For

example, suppose an operator queries a 3-place relation such as: “find the brother of

Heather,” or “find the sister of Alison.” This task can be represented using the following

single LOP:

(LAMBDA find-certain-relative-of-x? (<person> <PERSON> <relation>)
(ASK (Related <person> <PERSON> <relation>)))

If we consider the schemas for each of the equivalence classes in isolation we note that

none of them formally qualifies as a simple substitution of find-certain-relative-

of-x. When impasses of this sort occur, BOZ attempts to match the LOP to complex

equivalence class schemas constructed from the set of simple class schemas using a

composition of operators rule. The following definition formalizes the notion of operator

composition:

17

Definition 3 (composition of search operators): Let S and S' be

operator equivalence class schemas:

(NLAMBDA S (a1, a2, ... an)
(<meta-command> (<predicate> a1 a2 ... an)))

and

(NLAMBDA S' (b1, b2, ..., bm)
(<meta-command> (<predicate> b1 b2 ... bm)))

The composition of S and S', S ˚ S', is defined by the schema:

(NLAMBDA S-composition-S' (a1, ... (<predicate> b1 b2 ...
bm), ... am)

(<meta-command> (<predicate> a1 (<predicate> b1 b2 ... bm)
... an))

for some argument, ai.

Hence, a composition of two search operators is a single search operator that uses another

search operator as one or more of its arguments.

The following theorem establishes equivalence between LOPs and complex perceptual

operator schemas defined through composition.

Theorem 2: Let S'' = S ˚ S' such that S and S' are schemas for operator

equivalence classes, C and C'. If substitution(S'', LOP) is true then

substitution(POPi ˚ POPj, LOP) is true for all POPi C and all POPj C'.

Proof: Immediately from Definitions 1 and 2.

The following shows how a verify operator (connected?) can be composed with a

lookup operator (read-label) to form a complex substitution for the find-certain-

relative-of-X LOP.

18

(NLAMBDA read-label (<object>)
(ASK (Label (find-connectee <object> <OBJECT>) <LABEL>)))

A final result is needed to show equivalence between logical procedures and perceptual

procedures derived through operator substitution. This property insures that any perceptual

procedure prescribed by BOZ will allow the user to obtain the same results as the

corresponding logical procedure provided the perceptual procedure is performed correctly.

Theorem 3 (procedural equivalence): Let LP be a logical procedure

inductively defined as follows:

LP LOP

LP LP • LP

LP if LP then LP

LP LPm

LP repeat LP until LP

LP e

Any perceptual procedure, VP, derived from LP through operator substitution

is equivalent to LP.

Proof (by induction): By Definition 1, a logical procedure consisting of a

single LOP is equivalent to any perceptual procedure consisting of a single POP

if and only if substitution(POP, LOP) is true. If substitution(POP1, LOP1) and

substitution(POP2, LOP2) are true then LOP1 • LOP2 = POP1 • POP2 since, by

definition, the output of any operator is uniquely determined by the input and

the function computed by the operator. Since logical implication is context-free,

(if LOP1 then LOP2) is equal to (if POP1 then POP2) if and only if

substitution(POP1, LOP1) and substitution(POP2, LOP2) are true. Since

iteration is defined as LOPim = (LOPi1 • LOPi2 • . . . • LOPim), LOPim =

POPim when substitution(POPi, LOPi) is true.

19

Figure 14 shows the classifications for the logical operators in the airline reservation task.

Each operator in the task matches the schema of a single equivalence class. For each

logical operator in the task, a set of perceptual operators initially qualify as substitutions,

namely those perceptual operators that are members of the operator equivalence classes

named in parentheses in Figure 14. For example, the set of perceptual operators associated

with the search equivalence class are proposed as substitutions for the

findFlightWithOrigin and findSeat operators. Similarly, the operators of the

subtraction class match the description of the computeLayover operator.

findFlightWithOrigin (search)
findDestination (lookup)
available? (lookup)
determineDeparture (lookup)
determineArrival (lookup)
computeLayover (subtraction)
layoverLessThanX? (lessthan)
determineCost (lookup)
addCosts (addition)
costLessThanX? (lessthan)
findSeat (search)
emptySeat (lookup)

Figure 14: Operator Classifications for the Airline Reservation Task

It is important to note that BOZ has not yet decided which perceptual operator to choose in

each case. Decisions about which perceptual operators to match with each logical operator

are subject to further constraints computed by the perceptual data structuring and perceptual

operator selection components described in Sections 3.3 and 3.4. Consequently, what

BOZ has produced at this stage is a space of perceptual procedures that may be selected

according to additional design criteria.

3.3 Perceptual Data Structuring

Perceptual data structuring is the technique used to implement the second type of cognitive

advantage of graphic presentations: that graphic presentations sometimes allow users to

spend less time searching for needed information. The perceptual data structuring

component examines the information required to perform each logical operator in a task.

20

Two types of analyses are performed using this information. First, by noting the domain

sets that each logical operator is defined over, BOZ determines what information should

appear in a graphic designed to support a task. Second, by analyzing the relationships

between the operators in terms of the domain sets of information they manipulate, it is

determined: (a) how information shared by several operators should be collected in the

same spatial locality and graphically encoded using the same primitive graphical language;

(b) and how information not shared among operators can be partitioned into distinct

presentations. The perceptual data structuring component produces a perceptual data

structure specification that outlines the presentations that will be used to support the task,

the information that should appear in each presentation, and how information is to be

grouped into graphical objects within each presentation. The perceptual data structuring

component does not decide which primitive graphical languages are to be used to encode

each type of information in the presentations. These decisions are made by the perceptual

operator selection component (Section 3.4).

The remainder of this section describes a scheme that analyzes relationships between

operators by representing each operator as a vector defined over a collection of domain

sets. Relationships between vectors are determined by identifying common domain sets

occurring in vectors. A complete sketch of all relationships between vectors reveals how

information is to be collected together into graphical objects and partitioned among graphic

presentations.

3.3.1 Operator Vectors

Recall that every task description is defined over a finite collection of domain sets. When

taken together, all of the domain sets used by a task description form a feature space. A

feature space is formally defined as the cross product of all domain sets spanned by a task

description. Figure 15 shows an example of a feature space defined over the domain sets

that pertain to the airline reservation task.

21

[flight] x [origin] x [destination] x [departure] x [arrival] x [layover] x [cost] x [seat] x [availability]

Figure 15: Feature Space for the Airline Reservation Task

Each logical operator in a task description computes a relation of the form (p, o, ai, ... a j)

or (f, ai, ... aj) for some i and j less than or equal to the total number of domain sets drawn

from a feature space, called a vector. Vectors of the first form are called search vectors.

Vectors of the second form are called computation vectors. The first element in a search

vector, p, names the predicate that the search vector computes. The second element in a

search vector, o, is the object, on which p is predicated. The remaining elements of a

search vector, ai, ... a j, are attribute values for the predicate, p. The first element in a

computation vector, f, names the function that the operator computes. The remaining

elements in a computation vector, ai, ... aj, are the arguments to the function, f.

The operators in the airline reservation task define the vectors shown in Figure 16. The

vectors in Figure 16 indicate the relationships between the domain sets shown in Figure 14

as defined by the airline reservation task.

flight origin

flight destination

flight availability

flight departure

flight arrival

flight cost

flight seat

seat availability

departure arrival layover

layoverlayover

cost

cost

Figure 16: Vectors for the Airline Reservation Task.

3.3.2 Relationships Between Vectors

Relationships between vectors are determined in the following way. Search vectors sv1

and sv2 are said to be conjoint when they contain common objects, o. Search vectors sv1 =

(p, o, a1, ... a i) and sv2 = (p, o, b1, ... b j) are parallel when there exists a computation

vector cv = (f, c1, ... ck) such that there exists some cm in a1, ... a i and some cn in b1, . . .

bj for m and n in (1 ... k). Search vectors sv1 and sv2 are said to be orthogonal if some

attribute, ai, of sv2 appears as the object, o, in sv1. Search vectors sv1 and sv2 are

22

orthogonal to each other when some attribute, ai, of sv2 appears as the object, o, in sv1,

and some attribute, ai, of sv1 appears as the object, o, in sv2. Search vectors sv1 and sv2

are disjoint when they are neither parallel or orthogonal.

Relationships between vectors determine the perceptual structuring of information in a

presentation in the following way. Conjoint vectors group together attributes that pertain to

the same object. Consequently, these attributes should be encoded in a single graphical

object in order to minimize eye movement over the graphic when searching for that object

and its attributes. Parallel vectors indicate that some perceptual operator(s) requires that

two or more different objects and their attributes be coordinated by the user in order to

draw a particular inference. Consequently, both objects should appear in the same

presentation and be encoded using the same primitive graphical language. Disjoint vectors

indicate that no perceptual operator requires that two or more objects be coordinated to

drawn an inference. Vectors of disjoint operators can be supported in different

presentations since the information they manipulate is never used together. Orthogonal

vectors indicate part-of relationships between objects. Information manipulated by

orthogonal vectors is presented in separate nested presentations. That is, the user should

be able to view the part-of presentation by making an appropriate selection in the first

presentation.

Figure 17 shows the relationships between the vectors of Figure 16 for the airline

reservation task.

seat

availability

availabilityflight origin destination departure arrival cost

Figure 17: Vector Relationships for the Airline Reservation Task

23

Since the vectors pertaining to the origin, destination, departure, arrival, cost, and

availability of a flight are conjoint, they should be encoded in the same graphical object.

The vectors pertaining to seats and flights are orthogonal indicating that each seat object is a

part of a flight object. Hence, seating information should be presented in a separate graphic

presentation that is nested inside each flight box.

Figure 18 shows the initial perceptual data structure specification for the airline reservation

task.

(NESTED (PRESENTATION1 (flight (Origin Destination Departure
Arrival Cost Availability))

(PRESENTATION2 (seat (Seat Availability))))

Figure 18: Initial Perceptual Data Structure Specification for the Airline Reservation Task

This initial data structure indicates how data will be grouped together into complex

graphical objects and distributed among distinct graphic presentations. It is important to

note that it is not yet been decided how facts about the origin, destination, departure, etc. of

a flight are to be graphically encoded in the graphic. That is, BOZ has not yet associated

the names of primitive graphical languages with the predicate names appearing in the

perceptual data structure specification. Which primitive graphical languages to associate

with each predicate is determined by the perceptual operators selected to substitute the

logical operators in the task. Note that information about flight numbers and layovers will

not be encoded in any graphic. This has occurred since information about flight numbers is

never used in the task, and facts about layovers are produced as the results of a perceptual

operator, computeLayover.

3.4 Perceptual Operator Selection

The perceptual operator selection component chooses a single perceptual operator to

substitute each logical operator from the list of possibilities generated by the perceptual

operator substitution component. Selecting a single perceptual operator to substitute each

24

logical operator accomplishes two things: (a) collapses the space of possible perceptual

procedures to a single perceptual procedure judged to be the easiest to perform; and (b)

allows BOZ to design a single accompanying graphic that supports human performance of

the selected perceptual procedure.

Three important issues constrain the selection of perceptual operators. First, since the goal

is to arrive at a perceptual procedure that minimizes the effort required to correctly complete

a task, for each logical operator we wish to choose that perceptual operator that is

performed most efficiently and accurately by human users. A first criteria for operator

selection involves estimating the relative performance efficiency and accuracy of the

perceptual operators. Second, recall that each perceptual operator is associated with a

primitive graphical language that must be used to graphically encode information

manipulated by that operator. A second criteria when selecting operators is that the

representational power of the primitive graphical language associated with a candidate

perceptual operator be sufficient to encode the logical facts manipulated by the operator.

Third, recall that the perceptual data structure specification produced by the perceptual data

structuring component constrains some domain sets of information to be represented using

a single graphical object, or using the same primitive graphical language. A third criteria

for operator selection is that the primitive graphical languages associated with the selected

perceptual operators be combinable such that they result in coherent graphical

representations that agree with the perceptual data structure specification for the task. The

following sections explain how each of the operator selection criteria are used by BOZ to

ultimately arrive at a single perceptual procedure and graphic presentation.

3.4.1 Human Performance Rankings for Perceptual Operators

The most important criteria when selecting a perceptual operator is choosing that operator

that allows the human user to obtain the results of the operator most efficiently and

accurately. To determine which of a set of perceptual operators is likely to be the most

25

performance effective, BOZ uses a two-tier ranking system that is a generalization of the

approach used in Mackinlay’s APT program. The first tier ranks the equivalence classes

for operators appearing in Table 6 in order of their relative difficulty. For instance, search

operators require more effort to perform than lookup operators. Consequently, they are

always awarded the most efficient perceptual operators. The second tier ranks the

perceptual operators within each operator class. For instance, determining the horizontal

distance between two points on a scale is generally performed more efficiently than

determining the difference between two sloped lines. The rankings were generated using a

combination of two methods: (a) theoretical predictions based on a more fine-grained

consideration of each perceptual operator [Card, Moran, and Newell, 1983; Ullman, 1984];

and (b) experimental observations of human perceptual task performance that incorporate

measures of difficulty, accuracy, and perceptual salience [Cleveland and McGill, 1983;

Ullman, 1984; Jenks and Knos, 1961; Teghtsoonian, 1965; Davidoff, 1987]. Table 6

shows the rankings for perceptual operator equivalence classes, and the rankings for the

perceptual operators in each class.

Table 6: Ranking of Perceptual Operators and Equivalence Classes

A. Class Rankings:
1. plus, difference, quotient, times
2. verify
3. search
4. max, min

5. lessthan, greaterthan
6. equal
7. search and lookup
8. lookup

B. Operator Rankings:
SEARCH OPERATORS

search, verify : {Visibility, HorzPos, VertPos, Shape, Connectivity, Shading, Height, Width, LineDashing,
LineLength, LineThickness, Labels, Area}

lookup, search and lookup: {Shading, Shape, Labels, Height, Width, LineDashing, LineThickness,
Connectivity, HorzPos, VertPos, LineLength, Area, Visibility}

COMPUTATION OPERATORS
equal: {Labels, Shading, HorzPos, VertPos, Shape, LineDashing, Height, Width, LineThickness,

LineLength, Connectivity, Visibility, Area}
lessthan , greaterthan : {Shading, HorzPos, VertPos, Height, Width, LineThickness, LineLength,

Labels, Connectivity, Shape, LineDashing, Visibility, Area}
plus, times: {Height, Width, LineLength, LineThickness, HorzPos, VertPos, Labels, Connectivity,

Shading, LineDashing, Shape, Area}
difference, quotient : {HorzPos, VertPos, Height, Width, LineLength, LineThickness, Labels,

Connectivity, Area, Shading, Shape}

26

3.4.2 Primitive Graphical Language Expressiveness

The second criterion used during operator selection is that a selected perceptual operator

must be associated with a primitive graphical language that is powerful enough to encode

the logical facts manipulated by that operator. For example, even though the search-

shaded-object is the most efficiently performed search operator, it cannot be selected

to substitute the findFlightWithOrigin logical operator since the number of different

cities exceeds the number of different shades. When a selected perceptual operator fails to

meet the expressiveness needs of a logical operator it is disqualified and the next highest

ranking perceptual operator is considered. The interested reader can consult Mackinlay

(1986) for a thorough analysis of primitive graphical language expressiveness. BOZ, like

all other recent presentation systems, adopts Mackinlay’s mechanism for deciding

expressiveness.

3.4.3 Operator Combinability

The third criterion for operator selection concerns the combinability of perceptual operators.

Suppose we have selected the stack-heights perceptual operator to substitute the

addCosts logical operator in the airline reservation task and are currently selecting a

perceptual operator to substitute the findFlightWithOrigin operator. Suppose that

we are currently considering the determine-slope perceptual operator as a candidate

selection. Recall that the perceptual data structuring component has indicated that the

information relevant to these two operators should be encoded in the same graphical object.

Every perceptual operator has associated with it a graphical presentation object that is used

to graphically encode the information manipulated by that object. For example, the graphic

presentation object for the stack-heights and determine-slope operators are

<rectangle> and <line>, respectively. Note that the information relevant to the two

operators cannot be encoded in the same graphical object. That is, it is meaningless to

speak of the slope of a rectangle or the height of a line. Consequently, these two operators

are not combinable and we must disqualify determine-slope as a candidate for

27

selection. Now suppose we move on and consider the read-label perceptual operator.

Note that the two operators are indeed combinable. Even though the graphic presentation

object for the read-label operator is <label> and the graphic presentation object for the

stack-heights operator is <rectangle>, the two graphical objects can be combined to

form a labeled rectangle.

The next two sections describe how the set of graphic presentation objects and a set of

graphic object composition rules are used by BOZ to decide combinability of perceptual

operators.

3.4.3.1 Graphic Presentation Objects

Each primitive graphical language has a graphic presentation object associated with it,

either: <point>, <line>, <rectangle>, <polygon>, or <label>. The graphic presentation

objects for a primitive graphical language are those graphic objects that support the

performance of the perceptual operators that are associated with that graphical language.

For example, the graphic presentation object for the Height primitive graphical language is

<rectangle>. Note that only this object makes the perceptual operators associated with the

Height language meaningful. That is, it would be impossible to determine the height of a

point since a point by definition has no spatial extent.

Table 7 lists the graphic presentation objects associated with each of the primitive graphical

languages.

28

Table 7: Graphic Presentation Objects of the Primitive Graphical Languages

Horizontal Position = <point>
Vertical Position = <point>
Height = <rectangle>
Width = <rectangle>
Line Length = <line>
Area = <polygon>
Connectivity = <line>, <point>
Shading = <polygon>, <rectangle>
Labels = <label>
Color = <point>, <line>, <rectangle>, <polygon>
Line Thickness = <line>, <rectangle>, <polygon>
Line Dashing = <line>, <rectangle>, <polygon>
Shape = <polygon>
Visibility = <point>, <line>, <rectangle>, <polygon>, <label>

The first step in deciding perceptual operator combinability is to determine the graphic

presentation object of a candidate perceptual operator.

3.4.3.2 Composition Rules for Graphic Presentation Objects

The second step in deciding operator combinability is to compare the graphic presentation

object of the perceptual operator currently being considered with the presentation objects of

all previously selected operators that appear in the same vector in the perceptual data

structure specification. If the graphic presentation object matches those of the previously

chosen operators then the new operator is combinable. If the presentation object does not

match, BOZ attempts to demonstrate that they are combinable using the set of composition

rules for graphic objects given in Table 8.

29

Table 8: Composition Rules for Graphic Presentation Objects

Mark Composition Rules:
RULE 1: <point> + <point> = <point>
RULE 2: <point> + <line> = <line>
RULE 3: <line> + <line> = <line>
RULE 4: <rectangle> + <point> = <rectangle>
RULE 5: <rectangle> + <rectangle> = <rectangle>
RULE 6: <polygon> + <point> = <polygon>
RULE 7: <polygon> + <polygon> = <polygon>
RULE 8: <label> + <label> = <label>
RULE 9: <label> + <line> = <line>
RULE 10: <label> + <rectangle> = <rectangle>
RULE 11: <label> + <polygon> = <polygon>

Axis Composition Rules:
RULE 12: <horz-axis> + <horz-axis> = <horz-axis>
RULE 13: <vert-axis> + <vert-axis> = <vert-axis>
RULE 14: <horz-axis> + <vert-axis> = <cart-axis>

Network Composition Rules:
RULE 15: <node-link-node> + <node-link-node> =

<node-link-node>

Each composition rule describes how individual presentation objects can be legally

composed to form a single presentation object that inherits all of the graphical properties of

the constituent objects. For any new perceptual operator and set of previously selected

operators, the new operator is combinable if and only if a rule can be found that maps the

complete set of graphic presentation objects into another legal presentation object.

Applying the operator selection strategy to the set of possible perceptual operators obtained

for the airline reservation procedure yields the perceptual procedure shown in Figure 19.

For each logical operator, BOZ has selected the most efficient available perceptual operator

as a substitute within the expressiveness and combinability constraints described above. It

is interesting to note that the logical operator findFlightWithOrigin has been

substituted by the search-object-with-label, a very low-ranking perceptual

operator. This example illustrates how the expressiveness and combinability constrains

operator selection. A more appealing substitution for findFlightWithOrigin would

have been a perceptual operator in which the user locates a flight with a particular origin by

searching a horizontal scale or by searching for an object having a particular shape. The

reason that these two more attractive operators were not selected is because the higher-

ranking computeLayover had already staked claim to the Horizontal Position operators,

and the Shape primitive graphical language unfortunately does not offer enough unique

shapes to represent all ten different possible cities of origin. Consequently, due to these

30

constraints imposed by the other competing operators, the findFlightWithOrigin operator

was relegated to the more difficult perceptual task of searching for a labelled item.

(TASK airlineReservation
(while (search-object-with-label FLIGHT 'pit) do
(if (shaded? flight) then
(read-label flight LAYOVERCITY)
(determine-horz-pos flight ARRIVAL)
(while (search-object-with-label CONNECTING layovercity) do

(if (shaded? connecting) then
(read-label flight FINALDESTINATION)
(if (same-labels? finaldestination 'mex) then
(determine-horz-pos connecting DEPARTURE)
(determine-horz-distance departure arrival LAYOVER)
(if (and (right-of? departure arrival)

(left-of? layover)) then
(determine-height flight COST1)
(determine-height connecting COST2)
(stack-heights cost1 cost2 TOTAL)
(if (shorter? total) then
(repeat
(search-object-with-label flight SEAT1)

(until (shaded? seat1)))
(read-label seat1 SEATNUM1)
(repeat
(search-object-with-label connecting SEAT2)

(until (shaded? seat2)
(read-label seat2 SEATNUM2)]

Figure 19: The Perceptual Airline Reservation Procedure

Figure 20 shows the final perceptual data structure specification for the airline reservation

task after the composition rules have been applied.

(NESTED (PRESENTATION1 (flight ((Origin Labels) (Destination Labels)
(Departure HorzPos) (Arrival HorzPos)
(Cost Height) (Availability Shading))
<rectangle>)

(PRESENTATION2 (seat ((Availability Shading)) <rectangle>)))

Figure 20: Final Perceptual Data Structure Specification for the Airline Reservation Task

Note that each predicate appearing in the perceptual data structure specification has been

associated with a single primitive graphical language. In each case the primitive graphical

language chosen is precisely that language associated with the perceptual operators that

have been selected to manipulate that type of information.

31

3.5 Graphic Presentation Rendering

The rendering component uses the perceptual data structure specification to translate logical

facts submitted with the logical procedure to graphical facts. Graphical facts use the

primitive graphical languages to equivalently express the original set of logical facts in a

graphical format. Graphical facts are rendered using a graphic design that agrees precisely

with the perceptual data structure specification designed by BOZ for the task. The

rendering component produces a fully rendered graphic presentation of the graphical facts.

3.5.1 Translating Logical Facts to Structured Graphical Facts

A prerequisite to graphically rendering arbitrary sets of logical facts on the computer screen

is a notation for representing graphical facts that is equivalent to the notation used to

express logical facts. To accomplish this, Mackinlay’s formalism for expressing graphical

facts is used, and this has been shown to be equivalent to a logical representation of the

same relational information [Mackinlay, 1986]. Mackinlay’s formulation allows logical

facts to be expressed using each of the primitive graphical languages given in Table 2.

Graphical facts expressed in a primitive graphical language take the following form: (PGL

<object> <value>). For example, the facts in Figure 21 describe a square-shaped

graphic object that is shaded black and positioned along a horizontal axis.

(shape obj001 square)
(horzpos obj001 6)
(shading obj001 black)

0 2 4 6 8 10

Figure 21: Example Graphical Facts

Figure 22 shows how logical facts (left side) about airline flights are renamed to graphical

facts (right side) when the mapping given in the perceptual data structure specification

(Figure 20) is applied.

32

(origin flight117 pit)
(origin flight239 hou)
(destination flight117 hou)
(destination flight239 mex)
(departure flight117 10:00)
(departure flight239 15:00)
(arrival flight117 12:50)
(arrival flight239 17:15)
(cost flight117 179)
(cost flight239 239)
(availability flight117 ok)
(availability flight239 ok)

(label flight117 pit)
(label flight239 hou)
(label flight117 hou)
(label flight239 mex)
(horzpos flight117 10)
(horzpos flight239 15)

(horzpos flight117 12.83)
(horzpos flight239 17.25)
(height flight117 1.79)
(height flight239 2.39)

(shading flight117 whiteshade)
(shading flight239 whiteshade)

Figure 22: Translated Airline Reservation Facts

A final notation is needed for expressing collections of graphical facts whose structure

agrees with the perceptual data structure specification for the task. A structured graphical

fact corresponds to the “gestalt wholes” defined by the perceptual data structure

specification. For example, the facts in Figure 23 show how the graphical facts (Figure

21) are structured according to the perceptual data structure specification for the airline task

given in Figure 20.

(((labels flight117 pittsburgh)
(labels flight117 hou)
(horzpos flight117 10)
(horzpos flight117 12.83)
(height flight117 1.79)
(shading flight117 whiteshade))

((labels flight239 hou)
(labels flight239 mex)
(horzpos flight239 15.00)
(horzpos flight239 17.25)
(height flight239 2.39)
(shading flight239 whiteshade)))

Figure 23: Structured Graphical Facts

3.5.2 Rendering Graphical Facts

The rendering component automatically displays arbitrary sets of structured graphical facts

on the computer screen. This is accomplished by considered each structured fact,

determining the form in which it is to be presented by consulting the perceptual data

structure specification, and rendering the image of the fact on the screen. The rendering

algorithm uses an object-oriented approach to rendering graphic presentation objects and

33

their graphical properties. For every type of graphic presentation object (i.e., <point>,

<line>, <rectangle>, <polygon>, and <label>) there exists a corresponding display object

that can be rendered on the screen. To expedite the rendering of display objects, drawing

primitives are used to create images rather than bitmap displays. Display objects can inherit

one or more of a set of display methods that render the graphical properties of a display

object. Display methods are defined for each of the primitive graphical languages in Table

2. For presentations that do not use horizontal and vertical position to encode information,

a simple displacement scheme is used to minimize occlusion of display objects by other

display objects. Scales and guidelines are automatically computed, drawn, and labeled

using the DOMAINSETS field in the logical procedure description. Fonts have been chosen

arbitrarily and standardized. Nested graphics are implemented by mouse-sensitive buttons

that are always placed in the lower left corner in rectangles and polygons, and immediately

on top of points and lines. Customized methods are automatically attached to the buttons

that cause the nested graphic to be rendered when the button is selected.

Figure 24 shows a fully rendered set of graphical airline facts. As specified by the

perceptual data structure specification, the presentation consists of a single type of graphic

object (i.e., a flight box) that inherits four graphical properties (i.e., horizontal position,

shading, height, and labels). Selecting the SEATS button for any flight causes the nested

seating chart for that flight to be rendered. A rendered seating chart is shown in Figure 25.

34

Figure 24: Rendered Graphic Airline Schedule.

Figure 25: Rendered Seating Chart.

35

3.5.3 Interactive Graphic Presentation Objects

BOZ contains an additional package that allows the graphics generated by the rendering

component to support two-way interactions between sets of logical facts and their graphic

images. In addition to being able to effect changes in a graphic presentation through

manipulations of the internally-stored logical facts, the graphic objects in the presentations

can be manipulated by the user to effect changes in the set of stored logical facts. For

example, the upper, left-most flight box in the presentation in Figure 24 indicates that there

is flight from PIT to JFK leaving at 11:30am with no available seats costing $400. The

user may simultaneously change the graphical and internal representation of this

information by simply mouse-selecting the flight box and moving it to a new location,

changing its shading, or increasing or decreasing its height.

3.6 Limitations of BOZ’s Automated Design Approach

The following surveys important limitations of BOZ’s automated approach to graphic

presentation design.

3.6.1 Limitations of the Task Description Language

A limitation of BOZ’s task description language is that using the present notation LOPs can

only accept and return single values. A common situation in which it is desirable to return

sets of values is in describing complex search strategies. Using the present notation, the

default search space for any LOP is the entire factbase of relations. A simple task not

describable under this condition is binary search in which the input to successive operators

is a halving of the original factbase. This same problem is suffered by production system

languages such as OPS5 [Forgy, 1979]. Working memory elements must be tagged to

indicate that they are to be excluded from future search.

36

3.6.2 Limitations of the Perceptual Operator Substitution Component

An important limitation of BOZ’s perceptual operator substitution component concerns the

types of logical operators that BOZ can substitute. BOZ presently handles LOPs that

contain queries over quantitative, nominal, and ordinal information only. Roth (1990)

points out that quantitative, nominal, and ordinal information is a limited type of relational

information that is derived through the notion of set ordering. Roth (1990) articulates a

more complete space of relational information types in the context of graphic design. These

information types are shown in Figure 26.

quantitative nominal ordinal

set orderingset cardinality set coverage hierarchical
relations

relational information

Figure 26: Roth’s Relational Data Types

Roth shows that many popular graphic designs present information types other than those

derived through set ordering. For example, the pictogram shown in Figure 27 depicts

information about set cardinality and supports a simple counting task.

trucks
produced

cars
produced

1989

Figure 27: Pictograms: A Type of Graphic Not Designable by BOZ

BOZ’s present perceptual operator catalog does not contain counting operators.

Consequently, BOZ is unable to design presentations that support cardinality judgements

such as the pictogram shown in Figure 27.

37

3.6.3 Limitations of the Automated Perceptual Operator Selection

Component

There are many limitations of BOZ’s automated perceptual operator selection strategy.

First, it is important to note that there exists no general strategy that always chooses the

most efficiently or accurately performed perceptual operator, including those based on

experimental observations and detailed theoretical predictions. Chapter 4 discusses the

many factors influencing perceptual task performance, each of which have been shown to

introduce variance strong enough to overturn the results of any particular experiment,

making strong generalizations of theoretical and experimental results inappropriate. What

we can hope to achieve in an automated graphic design tool is a codified set of operational

design principles that perform satisfactorily across interesting tasks and graphics. An

important feature of BOZ is that the ranking scheme used for operator selection is

parameterized and easily modified. Should future psychological data or the characteristics

of any particular application or user population show BOZ’s operator rankings to be

inappropriate, the rankings can be quickly changed by simply reordering the entries in

Table 6.

Second, many task domains make use of domain-specific graphic conventions for which

practitioners of that domain have acquired practiced skill in using. It is not always the case

that these conventions were chosen based on which conventions were the most cognitively

efficient, but rather what informally seemed to comprise a useful notation at the time the

graphic convention was designed. Without specific knowledge of a problem domain, an

automated graphic design tool is unable to identify and select operators that correspond to

existing graphic conventions. BOZ, like APT [Mackinlay, 1986], allows the designer to

intervene and manually select perceptual operators in order to support existing conventions.

Third, when two logical operators are ranked evenly, the logical operator that appears first

in the submitted task description is allowed to choose a perceptual operator first. This

38

occurs since BOZ contains no additional selection criteria to apply when ties between

operators occur. Within the scope of BOZ’s design criteria it is not clear that any tie-

breaking criteria exist that have distinct advantages over the arbitrary ordering strategy used

by BOZ.

Fourth, the rankings of perceptual operators used by BOZ’s perceptual operator selection

component embody the following assumption: the performance difficulty of any operator

is constant over the entire range of input values. That is, BOZ assumes that it is never the

case that one perceptual operator is performed more efficiently than a second operator given

one set of input values, and performed less efficiently given a second set of inputs. This

assumption is known to be in general inappropriate. For example, judging the distance

between two points on scale that are aligned three units away from one another appears to

be easier than if the points are aligned, say, thirty-nine units apart. This phenomenon

occurs because some input data allow the user to exploit more low-level perceptual

capabilities such as subitizing [Klahr, 1973]. Similarly, Ware and Beatty (1988) show that

accuracy of color perception is not uniform over the space of perceivable colors. A more

reliable perceptual operator ranking system might be achieved by making the set of

rankings functionally dependent on the set of logical facts to be displayed. That is, rather

than using a fixed set of operator rankings, a different set of rankings would be computed

for each different set of logical facts. Since the data dependencies are likely to vary

between primitive graphical languages (and perhaps between the individual operators

themselves) is not clear what would constitute a reliable ranking function, what variables

should be included in the function, and the practicality of executing such a function and still

maintaining a run time that meets real-time graphic presentation standards.

Fifth, another data-dependent graphic design issue to which BOZ is currently insensitive is

the number of data values that can be practically displayed using a particular design. For

example, the graphic airline presentation is unlikely to be effective when the number of

39

flights to be displayed is more than fifteen or twenty due to unavoidable occlusion of some

flight boxes by others. The maximum number of data values presentable using any

presentation can be easily estimated by determining the smallest discriminable graphic

object size and the spatial extent of the fovea. For example, the advantages of the graphic

airline schedule are likely to disappear when the size of each flight box becomes too small

or the width and height of the presentation become too large to perceive in two or three eye

fixations. Note that it is trivial to extend BOZ to enforce this constraint by setting a

practical limit on the size of the domain sets that can be manipulated by each perceptual

operator, disqualifying any perceptual operator when the size of a domain set to be

presented exceeds it limit.

Fifth, the first tier of the operator ranking scheme, that which rates the relative importance

of each operator type is oversimplified in that it does not consider the number of times that

each operator will be executed during performance of the procedure. Note that a difficult

operator that is performed once during a procedure may be less important than a slightly

less difficult operator that is performed many times. In the worst case this

oversimplification can result in the most efficient perceptual operators being awarded to

logical operators that comprise a comparatively small part of the user’s task, while more

frequently performed logical operators are relegated to the less efficient perceptual

operators. This occurs since there is no way to discern in advance the number of times

each logical operator in a procedure will be performed during execution of that procedure.

For specific design applications, one strategy for circumventing this problem would be to

run the procedure in advance on several inputs and count the number of times each operator

is executed. This information could be used to hand optimize BOZ’s operator selections.

The procedure interpreter tool described in Chapter 4 can be used to accomplish this type of

off-line analysis.

40

3.6.4 Limitations of the Automated Rendering Component

There are several important limitations of the automated rendering component. First, the

rendering component is incapable of rendering presentations that make use of domain-

specific conventions. For example, airline seating charts typically orient the aircraft

pointing up, lower numbered seats appearing at the top and higher number seats at the

bottom. Since BOZ’s rendering component has no knowledge of this convention, the seats

are arranged in increasing order from left to right as are the hours along the time scale.

Second, many presentations depict realistic information such as spatial arrangements and

shapes that do not encode information vital to the task at hand but preserve many features

of a real-world artifact in an artificial representation. For example, airline seating charts

typically depict the aisle separating the two halves of the plane. Some seating charts also

use chair-shaped icons to represent seats instead of the generic box-shape used in BOZ’s

presentation. BOZ of course has no knowledge of these conventions. Note that despite

these two limitations it is still possible to locate any seat. What may be lost is a familiarity

and practice that users may have already acquired using other conventions.

Third, there are a number of issues pertaining to how humans perceptually group

information that have important implications for image rendering and to which BOZ’s

rendering component is not sensitive. These issue arise when objects in a graphic share

similar properties. For example, when viewing a set of marks in a graphic, people tend to

perceive marks positioned in close spatial proximity as a single perceptual unit. That is,

people typically perceive “xx xx” as two objects and “x x x x” as four objects. Graphic

objects that appear in a continuous line, or that have similar shapes or colors are also likely

to be grouped together. The basic problem arising from these effects is that the user of a

graphic may automatically and unavoidably draw inferences from a set of graphical facts

that are not included as part of a prescribed perceptual task. Note that perceptual grouping

effects are not always bad. For example, the Labels primitive graphical language makes

41

active use of perceptual grouping effects by placing any label associated with a graphic

object immediately below that object. Due to the proximity of the label to the object, the

user is immediately able to infer with which object the label is associated. Several

techniques exists for diminishing the effects of perceptual grouping when the effects of

grouping are negative. Chambers et al (1983) propose a “jittering” technique for breaking

up perceptual groupings that arise from spurious horizontal or vertical alignments.

Fourth, a basic feature of human visual perception is that the perception of graphically

encoded quantities is routinely erroneous. Consequently, for some primitive graphical

languages, it is insufficient to simply map the values from a logical domain set onto the

value of the perceptual domain set. Fortunately, many errors in perceived quantities behave

systematically facilitating the use of “correction formulas” to align perceived and actual

values. Weber’s Law and Steven’s Law are two techniques for adjusting continuous

perceptual scales such that perceived distances between values along the scale agree with

actual distance. Teghtsoonian (1965) shows how perceived area typically agrees with the

actual area raised to a power of 0.8. Flannery (1956) proposed a formula for correcting

area and diameter judgement for circle. BOZ applies these simple correction formulas to all

graphical facts before they are rendered. Unfortunately, not all perceptual distortion

phenomena can be accounted for at the level of simple information-extraction tasks. For

example, Kosslyn (1985) argues that when judging goodness of fit of a line through a set

of points in a graph, people tend to report a figure more consistent with r2 than r.

Distortion effects arising from more complex perceptual tasks seem to require their own

customized correction formulas, disallowing the use of simple formulas that are applied

generally to the primitive graphical languages.

Fifth, when using labels and table entries, BOZ arbitrarily chooses among typographic

conventions such as font, font size, and case. It has been demonstrated that typography

42

can affect several parameters of human performance, most importantly search time

[Vartabedian, 1971].

1

CHAPTER 4

THEORETICAL MEASURES OF GRAPHIC DESIGN EFFECTIVENESS

This chapter describes theoretical tools used to measure to what extent a BOZ-designed

presentation and procedure exploit the six advantages of graphical presentations discussed

in Chapter 1. To make these analyses more rigorous, BOZ contains a simulation

component that allows the logical and perceptual procedures handled by BOZ to be

executed. The simulation component tracks two important human task performance

parameters during execution of a procedure: (1) the number of times each task operator is

fired; and (2) the total number of items searched. These measures can be used to generate

theoretical predictions about the effectiveness of a BOZ-designed presentation with respect

to a task, and to compare the relative effectiveness of each of a set of alternative

presentations. The ultimate goal of the automated evaluation component is to produce

reliable usability predictions for any BOZ-designed presentation without the need for costly

empirical investigation.

4.1 Perceptual Computation

The first type of utility of graphic presentations and procedures was that they sometimes

reduce the amount of mental computation required to complete a task by: (a) substituting

less demanding perceptual operators in place of more demanding logical operators; and (b)

eliminating some perceptual operators that are not necessary to complete a task. The next

two sections describe three measures of computational complexity and show how the

simulation component can be used to run alternative logical and perceptual procedures

produced by BOZ to generate quantitative predictions about computational differences

between them.

2

4.1.1 Substituting Perceptual Operators

Recall that perceptual procedures are derived by substituting perceptual operators in place

of logical operators in a task description. One measure of computational complexity useful

for comparing informationally equivalent presentations and procedures is the execution time

for each operator. Differences in execution time occur when a perceptual operator is

performed more or less efficiently than its informationally equivalent logical operator.

Differences in operator execution times can reduce the total time to complete a task, the total

savings being a function of the number of times each operator is fired during performance

of the task. The following definition formalizes the savings due to operator substitution.

Definition 4 (savings due to operator substitution): Let LOP and

POP be logical and perceptual operators in logical and perceptual procedures

Plogical and Pperceptual. If tLOP is the time required to execute LOP and tPOP the

time required to execute POP, then the savings due to the operator substitution,

substitution(POP, LOP), is n * |tLOP - tPOP|, where n is the number of times LOP

is executed during the procedure.

Performance time of the perceptual operators has been shown to depend on many factors

including: the skill of the user [Kieras and Polson, 1985; Hegarty and Just, 1988], practice

[Schneider, 1985], particular presentation used [Lusk and Kersnick, 1979], age [Clancey

and Hoyer, 1987], culture [Hudson, 1968], or even social situation [Asch, 1956]!

Consequently, BOZ presently contains no way of reliably predicting when a POP for LOP

substitution will turn out to yield an efficiency advantage for any particular user. For the

airline reservation task, we can hypothesize that the task of perceptually estimating the

distance between two flight boxes (determineHorzDistance and stackHeights

operators) will be performed more efficiently than the tasks of adding and subtracting the

numerically expressed departure, arrival, and cost information (subtractTimes and

3

addCosts operators). Whether or not the operator substitutions designed by BOZ

actually yield human task performance efficiency remains an empirical question that is

addressed in Chapter 6.

4.1.2 Operator Elimination: Step Skipping and Emergence

A second measure of computational efficiency is the number of times each operator is fired.

Even though BOZ’s technique for deriving perceptual procedures from logical procedures

proceeds by substituting perceptual for logical operators on a one-to-one basis there are two

ways in which operators can be pruned from a perceptual procedure causing the total

number of perceptual operator firings to be less than the number of logical operator firings.

The following reviews two basic ways in which perceptual operators can be eliminated

from a perceptual procedure.

Step skipping occurs when during execution of a perceptual procedure it becomes

unnecessary to perform certain perceptual operators whose corresponding logical operators

are necessary for the completion of the logical procedure. For example, using the airline

schedules to determine the layover between two flights it is unnecessary to determine the

actual departure and arrival times of those flights. That is, it is possible to simply judge the

distance between two flight boxes without worrying about where along the horizontal scale

the boxes are positioned. Similarly, the heights of two boxes can be added together and the

total cost determined without first determining the heights of the two individual flight

boxes. The following definition formalizes the notion of savings due to step skipping.

Definition 5 (savings due to step skipping): Let LOPcomp be a

computation operator: (FN arg1 ... argn). Let {LOPsearch1, ... LOPsearchN} be

search operators that determine the arguments to LOPcomp. If

substitution(POPcomp, LOPcomp) and substitution(POPsearchi, LOPsearchj) hold

for all i and j {1 ... N} then {POPsearch1, ... POPsearchN} can be eliminated.

4

Emergence occurs when facts expressed in two primitive graphical languages also encode

other facts expressed in a third primitive graphical language. Savings due to emergence

occurs when the function computed by two computation operators is subsumed by a single

lookup operator. The following definition formalizes this notion.

Definition 6 (savings due to emergence): Let POPcomp1 and POPcomp2

be perceptual operators such that POPcomp1 PGL1 and POPcomp2 PGL2.

POPcomp1 and POPcomp2 can be eliminated if and only if POPsearch PGL3

such that substitution(POPsearch, POPcomp1 POPcomp2) or

substitution(POPsearch, POPcomp2 POPcomp1) is true.

Emergent operators implicated in Definition 6 are called relevant since they result in some

task performance savings. Irrelevant emergent operators do not compute results that

contribute to completion of a task. An emergent operator is correct when it produces facts

consistent with the set of other facts encoded in or computed from the graphic presentation,

and incorrect otherwise [Mackinlay and Genesereth, 1985]. For example, the flight boxes

in the airline graphic in Figure 24, in addition to supporting Height (cost) and Width

(duration) operators, also support Area operators. Using the current interpretation of the

graphic airline schedule, Area operators are both correct and irrelevant since they produce

meaningful results about “cost per hour” that are not necessary for the stated task.

BOZ presently contains no mechanism for automatically identifying which perceptual

operators in a perceptual procedure must be performed and which can be eliminated. This

occurs because BOZ has no way of guaranteeing that the results of an operator to be

eliminated will not be needed in some other part of the task procedure. Consequently,

perceptual operators in a procedure must be identified and marked by hand using the

following convention. Operators that can be eliminated due to step skipping are prefixed

5

by the reserved word SSpop, and operators eliminated due to emergence are prefixed by

the reserved word Epop. The following shows how the relevant perceptual operators in

the airline reservation task are marked to be eliminated due to step skipping:

(while (search-object-with-label FLIGHT 'pit) do
(if (shaded? flight) then
(read-label flight LAYOVERCITY)
(SSpop (determine-horz-pos flight ARRIVAL))
(while (search-object-with-label CONNECTING layovercity) do

(if (shaded? connecting) then
(read-label flight FINALDESTINATION)
(if (same-labels? finaldestination 'mex) then
(SSpop (determine-horz-pos connecting DEPARTURE))
(determine-horz-distance departure arrival LAYOVER)
(if (and (right-of? departure arrival)

(left-of? layover)) then
(SSpop (determine-height flight COST1))
(SSpop (determine-height connecting COST2))
(stack-heights cost1 cost2 TOTAL)
(if (shorter? total) then
(repeat
(search-object-with-label flight SEAT1)

(until (shaded? seat1)))
(read-label seat1 SEATNUM1)
(repeat
(search-object-with-label connecting SEAT2)

(until (shaded? seat2)
(read-label seat2 SEATNUM2)]

Figure 28: Operator Elimination in the Perceptual Airline Reservation Procedure

The simulation component counts the number of operator firings during the execution of

any procedure, skipping those operators that are marked with SSpop and Epop.

4.1.3 Hypothesized Computational Advantages of the Airline Graphic

Table 9 summarizes the hypothesized computational advantages of the airline schedule

graphic produced by BOZ and shown in Figure 24.

6

Table 9: Predicted Computational Advantages of the Airline Schedule Graphic

1. Substitutes a distance judgement (determine-horz-distance) in place of subtracting numerically
expressed departure and arrival times (computeLayover).

2. The determineDeparture and determineArrival operators are unnecessary due to step
skipping.

3. Substitutes a shade judgement (shaded?) for reading the words “ok” and “full” (available?).

4. Substitutes judging the combined heights of two flight boxes (stack-heights) for adding two
numerically expressed costs (addCosts).

5. The determineCost operator is unnecessary due to step skipping.

4.2 Visual Search

The second category of advantages of graphical presentations is that graphics sometimes

allow users to reduce the time they spend searching for needed information. Chapter 1

showed that search reductions offered by graphical presentations are achieved in three

ways: (1) grouping related information into a single spatial locality; (2) perceptually

indexing information in a graphic so that users can quickly select relevant subsets of the

total set of items; and (3) parallel performance of perceptual operators that compute search

constraints.

An important notion used throughout the analysis of visual search is a pointer referred to as

the EYE. The EYE keeps track of the current focus of the user’s attention within a graphic

presentation. The measure of search complexity for a task and presentation then is the total

number of times that EYE must change positions during performance of the task.

4.2.1. Locality

Larkin and Simon (1987) demonstrated that graphics sometimes group objects and relevant

attributes into one spatial location. This is accomplished by combining the use of the

various perceptual dimensions to encode several related dimensions of information in one

graphical object. For example, the airline schedule uses a box to represent a flight and the

7

height, shading, labeling, and spatial position of the box to encode information about the

times, cost, and availability of that flight.

Search reductions due to locality occur when lookup operators (see Table 4) execute on

structured facts (see Figure 29). If lookup operators must find attribute values for a given

object and some or all of those attributes occur within the same structured fact, the total

number of times that EYE must change positions is equal to the number of structured facts

searched and not the number of individual facts considered. The following definition

formalizes the notion of search savings due to locality.

Definition 7 (savings due to locality): Let POPlookup be a perceptual

lookup operator and F be a structured fact containing facts about graphical

object, g: ((PGL1 g value1), (PGL2 g value2) ..., (PGLN g valueN)). The

search cost of POPlookup is 0 if EYE = F, and 1 if EYE F.

For example, the structured factbase representation of the graphic airline schedule is shown

in Figure 29. If EYE is currently positioned on the flight117 fact, the total number of

items searched for the series of lookup operator given in Figure 30 is 1 since the EYE must

only be repositioned one time between the two structured facts. Search within each

structured fact is performed at no cost.

(((labels flight117 pittsburgh)
(labels flight117 hou)
(horzpos flight117 10)
(horzpos flight117 12.83)
(height flight117 1.79)
(shading flight117 whiteshade))

((labels flight239 hou)
(labels flight239 mex)
(horzpos flight239 15.00)
(horzpos flight239 17.25)
(height flight239 2.39)
(shading flight239 whiteshade)))

Figure 29: A Set of Structured Facts

8

(PROGN (determineDeparture ‘flight117 D)
(determineArrival ‘flight117 A)
(available? ‘flight117)
(determineDeparture ‘flight239 D)
(determineArrival ‘flight239 A)
(available? ‘flight239))

Figure 30: A Series of Lookup Operators

The simulation component records search reductions due to locality by counting only the

number of structured facts visited in the factbase when structured facts are present.

4.2.2 Indexing

Other investigators have shown that some primitive graphical languages can be processed

pre-attentively [Ullman, 1984]. These graphical languages are referred to here as indexing

primitive graphical languages. When a graphic uses an indexing primitive graphical

language to encode information, the following search reduction is obtained when search

operators are fired.

Definition 8 (savings due to indexing): Let POPsearch(OBJ, v) be a

search operator that searches for a structured fact containing a single fact that

satisfies POPsearch(OBJ, v). If n is the total number of structured facts in a

factbase, then the search savings due to indexing is from n to m, where m is

that subset of n such that each structured fact in m contains a single fact

satisfying POPsearch(OBJ, v).

For example, consider a search operator that looks for a flight with a 12:00 departure. The

airline schedule graphic shown in Figure 24 uses Horizontal Position to encode departure

information. Using this graphic, users can simply scan a vertical column aligned with the

12:00 label on the time scale and thus restrict their search for a flight to those flights that

leave in the immediate vicinity of 12:00. Similarly, when searching for a connecting flight,

the use of shading to encode availability information allows users to immediately exclude

from their search all shaded flight boxes since these flights are not available.

9

The simulation component tracks search reductions due to indexing by partitioning the

factbase (i.e., computing the sets n and m in Definition 8) prior to firing any search

operator whose predicate is encoded by an indexing primitive graphical language.

4.2.3 Parallelized Operators

Reductions in the number of items considered during search can be obtained by defining

parallel operators in the following way.

Definition 9 (savings due to parallel operators): Let POPSseq =

{pop1, pop2, ..., popz} be the complete set of operators appearing in a

procedure. A parallel operator is a set:

POPpar = {popa, pop i ... popj}

such that:

(i) popa, pop i ... popj POPSseq;

(ii) all pop {popa, pop i ... popj} are invoked given a single graphical

object, g;

(iii) popa is a search operator, and popi ... popj are lookup or

computation operators.

(iv) |POPpar| 4

If the operators in POPSpar are performed simultaneously we obtain a search

reduction from m, the total number of structured facts in the factbase, to n, the

number of structured facts having individual facts that satisfy each of {pop i . . .

popj}.

Condition (iii) specifies Treisman and Gelade’s finding that functional and spatial

parallelism cannot be implemented simultaneously [Treisman and Gelade, 1977; 1980].

Condition (iv) restricts the size of a parallel operator to the estimated number of

simultaneously perceivable graphical dimensions [Ericsson et al, 1980].

10

The simulation component contains the following simple notation for indicating that two or

more perceptual operators are to be executed in parallel. Parallel operators are indicated by

enclosing all constituent operator in parentheses and prefixing the list with the reserved

word //pop. Three search strategies can be derived from the airline reservation procedure

given in Figure 13 through application of the operator parallelization rule. Each successive

search strategy increases the size of a parallelized operator that manipulates the flight boxes

in the airline graphic. Each operator added to the //pop computes an additional search

constraint and removes disqualified flight facts from the set of facts visited by the EYE.

The three search strategies can be summarized as follows. rowSearch is the procedure

shown in Figure 13 and contains no parallel operators. rowSearch proceeds by first

finding a flight originating from Pittsburgh and then searching all remaining flights for a

flight that connects with the originating flight that satisfies the remaining time, cost, and

availability constraints. These additional constraints are checked sequentially.

rightOfSearch finds a flight originating from Pittsburgh and then considers only those

flights that depart after the originating flight arrives. rightOfSearch is the same as

rowSearch, but omits consideration of flight boxes that are not to the right of the end of the

current flight box. rightOfSearchU is identical to rightOfSearch except that only facts

about available flights (unshaded boxes) are visited by the EYE. Figure 31 shows the

rightOfSearchU procedure.

11

(PROCEDURE
(while (search-object-with-label FLIGHT 'pit) do
(if (shaded? flight) then
(read-label flight LAYOVERCITY)
(SSpop (determine-horz-pos flight ARRIVAL))
(while (//pop (search-object-with-label CONNECTING layovercity)

(same-labels? finaldestination 'mex)
(NOT (shaded? connecting))
(determine-horz-distance departure arrival LAYOVER)
(right-of? departure arrival)
(left-of? layover)) do

(SSpop (determine-height flight COST1))
(SSpop (determine-height connecting COST2))
(stack-heights cost1 cost2 TOTAL)
(if (shorter? total) then
(repeat
(search-object-with-label flight SEAT1)

(until (shaded? seat1)))
(read-label seat1 SEATNUM1)
(repeat
(search-object-with-label connecting SEAT2)

(until (shaded? seat2)
(read-label seat2 SEATNUM2)]

Figure 31: The rightOfSearchU Parallelized Procedure

Note that the Height operators cannot be combined with the other parallelized operators.

This combination violates Condition (iii) of Definition 9 in that it requires the simultaneous

implementation of functional and spatial parallelism since the costLessThanN? operator

receives height information from two different spatial locations.

The simulation component counts the items searched during execution of only the search

operator in a parallelized operator, subtracting out those items disqualified by the remaining

operators in the parallel operator. Parallelizing search procedures does not affect the

counting of the number of times that the operators are executed.

4.2.4 Predicted Search Advantages of the Airline Graphic

Table 10 summarizes the search advantages of the airline schedule graphic when used for

the airline reservation task.

12

 Table 10: Predicted Search Advantages of the Airline Schedule Graphic

1. Eliminates eye movement when looking up time, city, cost, and availability information since this
information is represented in the same spatial locality (a single flight box).

2. Allows the user to implement rightOfSearch when searching for connecting flights.

3. Allows the user to implement rightOfSearchU when searching for connecting flights.

Four simulations were run using two equivalent presentations of a set of airline flight facts:

(1) the tabular presentation shown in Figure 32; and (2) the graphic appearing in Figure 24.

The simulation results are shown in Figure 33.

Figure 32: Tabular Airline Schedule Presentation.

13

Figure 33: Simulation Results for the Alternative Procedures and Presentations.

14

The rowSearch procedure was run on the tabular presentation. The three alternative

parallelized procedures (i.e., rowSearch, rightOfSearch, and rightOfSearchU) were run

using the graphic presentation. The results show how the hypothesized advantages of the

graphic presentation over the tabular presentation are captured in the simulation.

The table at the top of Figure 33 shows that when the graphic is used, the number of

executions for operators that determine cost, departure, and arrival times of the flights is

reduced due to step skipping. The bar chart at the bottom of Figure 33 shows the search

counts for the four procedures and presentations. The first four sets of bars depict the

search counts for each type of search operator individually, while the rightmost set of bars

represents the total number of items searched. We can see from the first set of bars that as

the perceptual procedure becomes more parallelized, the number of items considered during

execution of search operators (e.g., findFlightWithOrigin) is reduced. This effect

can be attributed to the parallelized perceptual operator shown in Figure 31 which permits a

more informed search. Further search savings are achieved when lookup operators are

executed (the second set of bars in Figure 33). These savings occur since the graphic

airline schedule groups all information about a flight in a single graphical object. Using the

tabular presentation in which information about flights is spread out across several

columns, separate eye fixations are required to retrieve each value.

Note that the simulation results fail to capture two of the hypothesized advantages of the

graphic presentation. First, we still have no measure of the performance time for each

logical and perceptual operator, quantities upon which the predicted global savings in

performance time ultimately depend. Second, there seems to be no way of determining in

advance the perceptual processing skill of any individual user, and to reliably predict

which, if any, of the parallel search procedures users will be able to implement. Since

these two measures fall outside the scope of the predictive model they remain open for

empirical investigation. In Chapter 6, observed task performance times and operator

15

counts are used to used to estimates these missing parameters: (a) the likelihood that a user

followed a particular procedure using a particular graphic; and (b) the time required to

perform each logical and perceptual operator.

1

CHAPTER 5

GRAPHIC DESIGN EXAMPLES

This chapter applies BOZ and the theoretical measures of graphic presentation utility to the

design of graphics to support example user tasks in real-world applications. The graphics

produced are not purported to be definitive solutions for each application nor do the task

descriptions comprise accurate and complete characterizations of novice or expert task

performance as these comprise challenging areas of investigation themselves. Rather, the

examples have the following two goals: (1) to demonstrate the strengths and weaknesses

of the proposed technique for transforming descriptions of logical procedures and

unstructured facts to equivalent descriptions of perceptual procedures and structured

graphical facts; and (2) to assess to what extent the theoretical advantages of graphic

presentations are implicated by the application of this transformation to a set of example

tasks. Each example contains four parts: (1) a task description; (2) a graphic presentation

and perceptual procedure designed by BOZ for the task; (3) the results of a simulation that

compares the BOZ-designed presentation with a conventional tabular presentation; and (4)

an assessment of the effectiveness of the BOZ-designed presentation, and the ways in

which the example exercises the BOZ’s limitations.

5.1 An Extended Set of Airline Reservation Tasks

The following examples develop three alternative airline schedule graphics to support three

other tasks that airline customers frequently perform. The three tasks can be informally

summarized as follows:

2

(1) Schedule a specific layover: Many business travelers keep more than one

appointment on the same trip. In this case the customer is concerned with finding a

flight that passes through a particular city and lays over during a particular time

period.

(2) Find the cheapest flight(s) between two cities: Graduate students are

usually most concerned with minimizing the cost of the ticket rather than with

arriving at their destination at a specific hour or day.

(3) Find flights that minimizes the number of take-offs and landings:

Some customers try to minimize the number of take-offs and landings to minimize

total travel time, the effects of jet-lag, nausea, or ear trouble.

Airline Task 1: Schedule a specific layover

Task Description. Figure 34 shows the set of logical operators for Task 1. The

demanding operators in the task are the search operator that locate flights by origin, and the

computation operator that computes the duration of a layover in excess of the scheduled

meeting time. Operators that manipulate cost and availability information are simple lookup

operators. Figure 35 shows a procedure that uses the LOPs in Figure 34 to perform the

task. The procedure attempts to locate the two flights arriving in and departing from the

layover city that offer the minimum amount of “down time” between the flight times and the

beginning and ending time of the scheduled meeting.

3

(DOMAINSETS
(flight NOMINAL 50)
(origin NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax ord

paz pit pva qto roi sgo))
(destination NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax

ord paz pit pva qto roi sgo))
(departure QUANTITATIVE 100)
(arrival QUANTITATIVE 100)
(layovercity (departure arrival))
(begin-meeting QUANTITATIVE 144))
(end-meeting QUANTITATIVE 144))

(LOPS
(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA determineDestination (<flight> <DESTINATION>)
(ASK (Destination <flight> <DESTINTATION>)))

(NLAMBDA arrivesInLayoverCity? (<destination> <layovercity>)
(EQUAL <destination> <layovercity>)))

(NLAMBDA determineArrival (<flight> <ARRIVAL>)
(ASK (Arrival <flight> <ARRIVAL>)))

(NLAMBDA arrivesBeforeMeeting? (<arrival> <begin-meeting>)
(LESSP <arrival> <begin-meeting>))

(NLAMBDA computeDownTime (<arrival> <begin-meeting> <DOWNTIME>)
(DIFFERENCE <arrival> <begin-meeting> <DOWNTIME>))

(NLAMBDA lessDownTime? (<downtime> <downtime>)
(LESSP <downtime> <downtime>))

(NLAMBDA landsInDestinationCity? (<destination> <destination>)
(EQUAL <destination> <destination>)))

(NLAMBDA determineDeparture (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA departsAfterMeeting? (<departure> <end-meeting>)
(LESSP <departure> <end-meeting>))

(NLAMBDA computeTotalDownTime (<downtime> <downtime> <DOWNTIME>)
(DIFFERENCE <downtime> <downtime> <DOWNTIME>))

Figure 34: Logical Operators for Airline Reservation Task 1.

(LAMBDA (originCITY layoverCITY destinationCITY beginMEETING endMEETING)
(repeatuntil (findFlightWithOrigin FLIGHT1 originCITY)
(determineDestination flight1 DESTINATION1)
(if (arrivesInLayoverCity? destination1 layoverCITY)
then (determineArrival flight1 ARRIVAL1)
(if (arrivesBeforeMeeting? arrival1 beginMEETING)
then (computeDownTime beginMEETING arrival1 DOWNTIME)
(if (lessDownTime? downtime *TIGHTEST1*)
then (SETQ *TIGHTEST1* downtime)))))

(repeatuntil (findFlightWithOrigin FLIGHT2 layoverCITY)
(determineDestination flight2 DESTINATION2)
(if (landsInDestinationCity? destination2 destinationCITY)
then (determineDeparture flight2 DEPARTURE2)
(if (departsAfterMeeting? departure2 endMEETING)
then (computeDownTime departure2 endMEETING DOWNTIME)
(if (lessDownTime? downtime *TIGHTEST2*)
then (SETQ *TIGHTEST2* downtime)))))

(computeTotalDownTime *TIGHTEST1* *TIGHTEST2* DOWNTIME))

Figure 35: Logical Procedure for Airline Reservation Task 1.

4

Figure 36: Graphic Presentation Designed for Airline Reservation Task 1.

Graphic Presentation and Procedure. Figure 36 shows the graphic presentation

produced by BOZ. The choice of <line> as the graphical presentation object allows two

identical domain sets to be composed into each axis. The horizontal axis encodes both

departure and arrival time information. The horizontal positions of the two endpoints of the

line encode departure and arrival times, respectively. The vertical axis encodes both origin

and destination information. The vertical position of the leftmost (rightmost) endpoint

encodes origin (destination).

Figure 37 shows the accompanying perceptual procedure derived by substituting the

selected perceptual operators (POPs) in place of LOPs in the original logical procedure.

(LAMBDA (originCITY layoverCITY destinationCITY beginMEETING endMEETING)
(repeatuntil (search-obj-at-vert-pos FLIGHT1 originCITY)
(determine-vert-pos flight1 DESTINATION1)
(if (vert-coincidence? destination1 layoverCITY)
then (SSpop (determine-horz-pos flight1 ARRIVAL1))

5

(if (left-of? arrival1 beginMEETING)
then (compute-horz-distance beginMEETING arrival1 DOWNTIME)
(if (left-of? downtime *TIGHTEST1*)
then (SETQ *TIGHTEST1* downtime)))))

(repeatuntil (search-obj-at-vert-pos FLIGHT2 layoverCITY)
(determine-vert-pos flight2 DESTINATION2)
(if (vert-coincidence? destination2 destinationCITY)
then (SSpop (determine-horz-pos flight2 DEPARTURE2))
(if (right-of? departure2 endMEETING)
then (compute-horz-distance departure2 endMEETING DOWNTIME)
(if (left-of? downtime *TIGHTEST2*)
then (SETQ *TIGHTEST2* downtime)))))

(horz-projection1 *TIGHTEST1* *TIGHTEST2* DOWNTIME))

Figure 37: Perceptual Procedure for Airline Reservation Task 1.

The procedure can be described informally as follows. To locate a flight satisfying the

layover criteria the user begins by locating a flight that departs from the city of origin and

arrives in the layover city. The user then determines the arrival time of the flight by

determining the horizontal coincident of the right end of the line depicting the flight. The

arrival time is then compared to the beginning time of the meeting. All other flights having

the desired origin and destination are considered until the flight with the smallest down time

is located. The earliest flight after the meeting is located analogously.

Analysis. The perceptual procedure in Figure 37 demonstrates an important limitation of

the operator substitution method for generating perceptual procedures. This limitation

concerns BOZ’s inability to reorder the operators in a perceptual procedure to arrive at more

practical perceptual procedures. A more likely perceptual procedure for the presentation in

Figure 36 would be to first locate the point of intersection of the layover city and meeting

time and then proceed to search for flights having the specified origins and destinations.

Despite this limitation in accounting for what procedure users actually will follow, the

reordered procedure produces the same simulation results as the procedure produced by

BOZ. This occurs since any procedure derived through a reordering of operators has no

general efficiency advantages over another.1 Consequently, the loss in descriptiveness

1 In general, procedures derived through operator permutations are equivalent with respect to the entire set
of facts enumerable in the feature space over which the procedures are defined. However, the characteristics
of a domain or task may limit the set of expressible facts to a subset of the fully enumerated fact set. In
this case, efficiency differences due to operator permutations may arise.

6

does not affect the presentation produced or the measures of presentation effectiveness

obtained from simulation. Chapter 7 discusses the status of BOZ-produced perceptual

procedures as useful accounts of presentation-based task performance.

Table 11 informally describes the search and computation savings offered by the graphic

presentation in Figure 36.

Table 11: Predicted Efficiency Advantages of the Specific Layover Graphic

SEARCH:
Flights can be searched directly by layover city by locating the layover city along the horizontal axis. This
search is further expedited since the cities are alphabetically ordered along the axis.

Search for a flight in a particular time interval is reduced by allowing the user to perceptually scan a
horizontal interval that corresponds to that time interval.

COMPUTATION:
The duration of a layover in excess of the meeting time can be determined by performing a simple
horizontal distance judgement.

The operators determineDeparture and determineArrival can be eliminated due to step skipping.

The logical and perceptual procedures were used to generate quantitative predictions about

the utility of the tabular airline presentation shown in Figure 33 and the graphic presentation

in Figure 36. Figure 38 shows the simulation results for the alternative logical and

perceptual procedures when run on a set of airline flight facts such as those shown in

Figure 13. The simulation results predict that substituting the search-obj-at-vert-

pos operator will reduce the number of items searched by one half. We can also

hypothesize that the determine-horz-distance operator will be performed more

efficiently than the computeDownTime operator, although this prediction cannot be made

by the simulation.

7

Figure 38: Simulation Results for Airline Reservation Task 1.

Airline Task 2: Find the cheapest flight(s) between two cities

Task Description. Figure 39 shows the set of logical operators for Airline Task 2. The

demanding operators in this task are the search operator that searches for flights based on

origin and the computation operator that computes the combined cost of two connecting

flights. Figure 40 shows a procedure that uses the LOPs in Figure 39 to perform the task.

The procedure searches for flights leaving from the specified city and checking the

destination city. The set of flights is then searched for a flight having an origin matching

the destination of the previous flight. The costs for each flight are aggregated and the

lowest cost flight is chosen.

8

(DOMAINSETS
(flight NOMINAL 50)
(origin NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax ord

paz pit pva qto roi sgo))
(destination NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax

ord paz pit pva qto roi sgo))
(departure QUANTITATIVE 100)
(arrival QUANTITATIVE 100)
(cost QUANTITATIVE 500)
(availability NOMINAL (ok full))

(LOPS
(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA determineDestination (<flight> <DESTINATION>)
(ASK (Destination <flight> <DESTINTATION>)))

(NLAMBDA landsInDestinationCity? (<destination> <destination>)
(EQUAL <destination> <destination>)))

(NLAMBDA determineCost (<flight> <COST>)
(ASK (Cost <flight> <COST>))

(NLAMBDA cheapestSoFar? (<cost> <cost>)
(LESSP <cost> <cost>))

(NLAMBDA addCosts (<cost> <cost> <COST>)
(PLUS <cost> <cost> <COST>))

(NLAMBDA determineArrival (<flight> <ARRIVAL>)
(ASK (Arrival <flight> <ARRIVAL>)))

(NLAMBDA determineDeparture (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA available? (<flight> <availability>)
(DIFFERENCE <flight> <availability>))

Figure 39: Logical Operators for Airline Reservation Task 2.

(LAMBDA (originCITY destinationCITY)
(repeatuntil (findFlightWithOrigin FLIGHT originCITY)
(determineDestination flight DESTINATION1)
(if (landsInDestinationCity? destination destinationCITY)
then (determineCost flight COST)
(if (cheapestSoFar? cost *CHEAPESTFARE*)
then (SETQ *FLIGHT* flight)

(SETQ *CHEAPESTFARE* cost))))
(repeatuntil (findFlightWithOrigin FLIGHT1 originCITY)
(determineDestination flight1 DESTINATION1)
(determineCost flight1 COST1)
(repeatuntil (findFlightWithOrigin FLIGHT2 destination1)
(determineDestination flight2 DESTINATION2)
(if (landsInDestinationCity? destination2 destinationCITY)
then (determineCost flight2 COST2)
(addCosts cost1 cost2 TOTAL)
(if (cheapestSoFar? total *CHEAPESTFARE*)
then (SETQ *FLIGHT* (CONS flight1 flight2))
(SETQ *CHEAPESTFARE* total))))))

Figure 40: Logical Procedure for Airline Reservation Task 2.

9

Figure 41: Graphic Presentation Designed for Airline Reservation Task 2.

Graphic Presentation and Procedure. Figure 41 shows the graphic produced by

BOZ for the cheapest flight task. Figure 42 shows the accompanying perceptual procedure

derived by substituting perceptual operators (POPs) in place of LOPs in the original logical

procedure.

10

(LAMBDA (originCITY destinationCITY)
(repeatuntil (search-obj-at-horz-pos FLIGHT originCITY)
(read-label flight DESTINATION1)
(if (same-labels? destination destinationCITY)
then (SSpop (determine-height flight COST))
(if (shorter? cost *CHEAPESTFARE*)
then (SETQ *FLIGHT* flight)

(SETQ *CHEAPESTFARE* cost))))
(repeatuntil (search-obj-at-horz-pos FLIGHT1 originCITY)
(read-label flight1 DESTINATION1)
(SSpop (determine-height flight1 COST1))
(repeatuntil (search-obj-at-horz-pos FLIGHT2 destination1)
(read-label flight2 DESTINATION2)
(if (same-labels? destination2 destinationCITY)
then (SSpop (determine-height flight2 COST2))
(stack-heights cost1 cost2 TOTAL)
(if (shorter? total *CHEAPESTFARE*)
then (SETQ *FLIGHT* (CONS flight1 flight2))
(SETQ *CHEAPESTFARE* total))))))

Figure 42: Perceptual Procedure for Airline Reservation Task 2.

The procedure can be described informally as follows. The user must locate a flight box

with the specified city of origin along the horizontal axis. The destination city is

determined by reading the label on the flight box. The destination city information is then

used to locate a flight that has a matching origin by searching along the same horizontal

axis. For each connecting flight found the combined cost of the two flights is determined

by judging the combined heights of the two flight boxes. Among these combinations the

user must choose the two flight boxes having the smallest combined height.

Analysis. Table 12 informally describes the search and computation savings offered by

the graphic presentation in Figure 41.

Table 12: Predicted Efficiency Advantages of the Cheapest Flight Graphic

SEARCH:
Flights can be searched directly by origin by locating the cities along the horizontal and vertical axes. This
search is further expedited since the cities are alphabetically ordered along the axes.

COMPUTATION:
The addCosts operator is replaced by the perceptual task of judging the combined height of two boxes.

The determineCost operator is eliminated due to step skipping.

11

The logical and perceptual procedures were used to generate quantitative predictions about

differences between the tabular presentation shown in Figure 33 and the graphic

presentation in Figure 41. Figure 43 shows the simulation results for the alternative logical

and perceptual procedures when run on the set of flight facts given in Figure 13. Since the

search component of the task inherently requires backtracking, indexing the flights by city

causes the number of items searched to be dramatically reduced. Savings due to locality

(lookup operators) occur since all information pertaining to each flight is available at a

single location.

Figure 43: Simulation Results for Airline Reservation Task 2.

As an exercise we can simplify the task by requiring the user to locate a single flight

between two specified cities having the lowest cost, between Pittsburgh and Houston for

example. Removing the addCosts operator from the LOPs description in Figure 39

accomplishes this. Figure 44 shows the graphic produced by BOZ for this task.

12

Figure 44: Alternative Graphic Presentation for Airline Reservation Task 2.

Note that by lowering the task requirements on the representation of cost information

allows a less powerful primitive graphical language that does not support arithmetic

operators, namely Area, to qualify. Additionally, avoiding the use of Height to encode cost

information makes the vertical dimension available to encode other information. In this

case, the destination of the flights is encoded along the vertical axis. Searching for a flight

between two cities now reduces to finding the point of intersection for a vertical and

horizontal position.

13

Airline Task 3: Minimize Number of Connections

Task Description. Figure 45 shows the set of logical operators for Airline Task 3. The

demanding operator in the task is the search operator that locate flights by origin.

Operators that manipulate time, cost, and availability information are simple lookup

operators. Figure 46 shows a procedure that uses the LOPs in Figure 45 to perform the

task.

(DOMAINSETS
(flight NOMINAL 50)
(origin NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax ord

paz pit pva qto roi sgo))
(destination NOMINAL (aca alb bga bue car dal gdl hou lim mex mnt oax

ord paz pit pva qto roi sgo))
(departure QUANTITATIVE 100)
(arrival QUANTITATIVE 100)
(cost QUANTITATIVE 500)

(LOPS
(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA determineDestination (<flight> <DESTINATION>)
(ASK (Destination <flight> <DESTINTATION>)))

(NLAMBDA landsInDestinationCity? (<destination> <destination>)
(EQUAL <destination> <destination>)))

(NLAMBDA determineCost (<flight> <COST>)
(ASK (Cost <flight> <COST>))

(NLAMBDA determineArrival (<flight> <ARRIVAL>)
(ASK (Arrival <flight> <ARRIVAL>)))

(NLAMBDA determineDeparture (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA connecting? (<departure> <arrival>)
(GREATERP <departure> <arrival>))

Figure 45: Logical Operators for Airline Reservation Task 3.

14

(LAMBDA (originCITY destinationCITY)
(SETQ DONE NIL)
(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT originCITY))
(determineDestination flight DESTINATION)
(if (landsInDestinationCity? destination destinationCITY)
then (determineCost flight COST)

(determineDeparture flight DEPARTURE)
(determineArrival flight ARRIVAL)
(SETQ DONE T)))

(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT1 originCITY))
(determineDestination flight1 DESTINATION1)
(determineArrival flight1 ARRIVAL1)
(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT2 destination1)
(determineDestination flight2 DESTINATION2)
(if (landsInDestinationCity? destination2 destinationCITY)
then (determineDeparture flight2 DEPARTURE2)
(if (connecting? departure2 arrival1)
then (determineCost flight1 COST1)
(determineCost flight2 COST2)
(SETQ DONE T)))))

(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT1 originCITY))
(determineDestination flight1 DESTINATION1)
(determineArrival flight1 ARRIVAL1)
(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT2 destination1)
(determineDeparture flight2 DEPARTURE2)
(if (connecting? departure2 arrival1)
then (determineDestination flight2 DESTINATION2)
(determineArrival flight2 ARRIVAL2)
(repeatuntil (OR DONE (findFlightWithOrigin FLIGHT3

destination2))
(determineDestination flight3 DESTINATION3)
(if (landsInDestinationCity? destination3 destinationCITY)
then (determineDeparture flight3 DEPARTURE3)
(if (connecting? departure3 arrival2)
then (determineCost flight1 COST1)
(determineCost flight2 COST2)
(determineCost flight3 COST3)
(SETQ DONE T)))))

(LIST flight flight1 flight2 flight3)

Figure 46: Logical Procedure for Airline Reservation Task 3.

15

Figure 47: Graphic Presentation Designed for Airline Reservation Task 3.

Graphic Presentation and Procedure. Figure 47 shows the graphic presentation

produced by BOZ. The graphic encodes each flight using a line drawn between the flight’s

origin and destination cities which are positioned around the circular axis. Since all other

operators in the task are simple lookup operators, the information manipulated by them is

encoded using labels. Figure 48 shows the accompanying perceptual procedure derived by

substituting perceptual operators (POPs) in place of LOPs in the original logical procedure.

Searching for a series of connecting flights follows the same procedure of locating a flight

with a specific origin, determining its destination, and finding the next flight having an

origin matching the destination of the previous flight.

(LAMBDA (originCITY destinationCITY)
(SETQ DONE NIL)
(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT originCITY))
(determine-horz-pos flight DESTINATION)
(if (horz-coincidence? destination destinationCITY)
then (read-label flight COST)

16

(read-label flight DEPARTURE)
(read-label flight ARRIVAL)
(SETQ DONE T)))

(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT1 originCITY))
(determine-horz-pos flight1 DESTINATION1)
(read-label flight1 ARRIVAL1)
(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT2 destination1)
(determine-horz-pos flight2 DESTINATION2)
(if (horz-coincidence? destination2 destinationCITY)
then (read-label flight2 DEPARTURE2)
(if (right-of? departure2 arrival1)
then (read-label flight1 COST1)

(read-label flight2 COST2)
(SETQ DONE T)))))

(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT1 originCITY))
(determine-horz-pos flight1 DESTINATION1)
(read-label flight1 ARRIVAL1)
(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT2 destination1)
(read-label flight2 DEPARTURE2)
(if (right-of? departure2 arrival1)
then (determine-horz-pos flight2 DESTINATION2)
(read-label flight2 ARRIVAL2)
(repeatuntil (OR DONE (search-obj-at-horz-pos FLIGHT3

destination2))
(determine-horz-pos flight3 DESTINATION3)
(if (horz-coincidence? destination3 destinationCITY)
then (read-label flight3 DEPARTURE3)
(if (right-of? departure3 arrival2)
then (read-label flight1 COST1)

(read-label flight2 COST2)
(read-label flight3 COST3)
(SETQ DONE T)))))

(LIST flight flight1 flight2 flight3)

Figure 48: Perceptual Procedure for Airline Reservation Task 3.

Analysis. The graphic in Figure 47 raises another limitation of BOZ. This limitation

concerns perceptual grouping effects between graphical objects. For example, a more

accurate account of the perceptual procedure followed by users would incorporate a more

sophisticated search for angles composed of two lines (i.e., perceptual groups) whose

endpoints coincide with the desired origin and destination points rather than the simple

search for individual lines. Tasks that manipulate perceptual groups fall beyond what is

describable in BOZ’s task description language. Recall from Section 3.6 that this basic

limitation occurs because BOZ contains no notation to indicate relations between relations.

Consequently, it is important to note that BOZ’s choice of the circular axes is made to

minimize occlusions among single dimensional lines when the values along the axis do not

need to be ordered (nominal domain sets).

17

Table 13 informally describes the BOZ-predicted search and computation savings offered

by the circular graphic presentation in Figure 47.

Table 13: Predicted Efficiency Advantages of the Minimum Connections Graphic

SEARCH: Search for a flight having a particular origin is reduced since city names are organized along
the circular (horizontal) axis.

The perceptual procedure was used to generate quantitative predictions about the utility of

the graphic presentation in Figure 47 with respect to the stated task. Figure 49 shows the

simulation results for the alternative logical and perceptual procedures when run on a

sample set of flight facts.

Figure 49: Simulation Results for Airline Reservation Task 3.

18

5.2. SPOOL File Management

In this second example the task-analytic theory is applied to a task performed by computer

operators. The task involves periodically checking a list of jobs that are waiting to be

assigned to printers. Before being assigned to a printer, all jobs are first sent to a single

storage area called a SPOOL file. Print jobs are continually taken out of the SPOOL file on

a first-come-first-served basis and assigned to printers. Jobs can occur in one of several

paper formats: 16 x 24 inch, 10 x 12 inch, punched cards, mailing labels, etc. When a job

arrives to the SPOOL file to be assigned to a printer, it must wait for a printer to become

available that is currently set up to print using that particular kind of paper. Print job

assignments are done automatically by the job scheduler and do not require action on the

part of the computer operator. The only action performed by the computer operator is to

decide how many printers should be set up to print with each kind of paper.

A problem arises when there is a poor match between the paper formats of the jobs that

come into the SPOOL file and the paper formats that are currently set up on the printers.

That is, if printers are set up to print using a certain kind of paper and incoming jobs

require a different format, a backlog of print jobs begins to grow in the SPOOL file while

printers remain idle. Computer scientists refer to this phenomenon as poor job throughput.

The computer operator’s responsibility is to maintain a high degree of job throughput by

continually monitoring a listing of the jobs currently held in the SPOOL file. When

throughput decreases the operator must decide which printers should be changed to new

formats to allow more jobs waiting in the SPOOL file to get through.

Task Description. Figures 50 and 51 show a set of LOPs and a procedure that performs

the SPOOL task.

19

(SPOOL
(DOMAINSETS (VALUE
(job NOMINAL 5000)
(jobsize QUANTITATIVE (0 128 256 512 640 768 896 1024 1152 1280))
(jobformat NOMINAL (8x10 labels cards))
(printer NOMINAL (spool printer001 printer002 printer003

printer004 printer005))
(printerstatus NOMINAL (on off))
(printerformat NOMINAL (8x10 labels cards))
(jobclasssize (jobsize))
(printerqueuesize (jobsize))

(LOPS (VALUE
(NLAMBDA add-SPOOL-job-sizes (<jobsize> <jobsize> <JOBCLASSSIZE>)
(PLUS <jobsize> <jobsize> <JOBCLASSSIZE>))

(NLAMBDA overflowing? (jobclasssize> <jobclasssize>)
(GREATERP (jobclasssize> <jobclasssize>))

(NLAMBDA search-SPOOL-job-with-format (<JOB> <jobformat>)
(ASK (Jobformat <JOB> <jobformat>)))

(NLAMBDA job-waiting-in-SPOOL? (<job> <printer>)
(ASK (Printer <job> <printer>)))

(NLAMBDA determine-job-size (<job> <JOBSIZE>)
(ASK (Jobsize <job> <JOBSIZE>)))

(NLAMBDA smaller-printer-queue? (<printerqueuesize>
<printerqueuesize>)

(LESSP <printerqueuesize> <printerqueuesize>))
(NLAMBDA search-printer-with-format (<PRINTER> <printerformat>)
(ASK (Printerformat <PRINTER> <printerformat>)))

(NLAMBDA add-print-job-sizes (<jobsize> <jobsize> <PRINTERQUEUESIZE>)
(PLUS <jobsize> <jobsize> <PRINTERQUEUESIZE>)

(NLAMBDA search-printer-job-in-queue (<JOB> <printer>)
(ASK (Printer <JOB> <printer>)))

(NLAMBDA determine-format-of-printer (<printer> <PRINTERFORMAT>)
(ASK (Format <printer> <PRINTERFORMAT>)))

(NLAMBDA printer-on? (<printer> <printerstatus>)
(ASK (Printerstatus <printer> <printerstatus>)))

(NLAMBDA formats-match? (<printerformat> <jobformat>)
(EQUAL <printerformat> <jobformat>))

(NLAMBDA full-printer-queue? (<printerqueuesize> <printerqueuesize>)
(GREATERP <printerqueuesize> <printerqueuesize>))

(NLAMBDA change-printer-format (<printer> <printerformat>)
(TELL (Printerformat <printer> <printerformat>)))

(NLAMBDA find-off-printer (<PRINTER> <printerstatus>)
(ASK (Printerstatus <PRINTER> <printerstatus>)))

(NLAMBDA turn-on-printer (<printer> <printerstatus>)
(TELL (Printerstatus <printer> <printerstatus>)))

Figure 50: Logical Operators for the SPOOL Task.

20

(LAMBDA
(SETQ SPOOLCLASSES ‘(8x10 labels cards))
(SETQ PRINTERS ‘(printer001 printer002 printer003

printer 004 printer005))
(SETQ *max-spool-capacity* 1280)
(SETQ *max-printer-capacity* 512)
(for spoolclass in SPOOLCLASSES
do (SETQ TAKEACTION NIL)

(SETQ *classtotal* 0)
(while (search-SPOOL-job-with-format JOB spoolclass)
do (if (job-waiting-in-SPOOL? job ‘spool)

then (determine-job-size job SIZE)
(add-SPOOL-job-sizes size *classtotal* SPLSIZE)
(SETQ *classtotal* SPLSIZE)))

(if (overflowing? *classtotal* *max-spool-capacity*)
then (SETQ TAKEACTION T))

(if TAKEACTION
then (SETQ machines (COPY printers))

(while (and TAKEACTION machines)
do (SETQ machines (CDR machines))
(if (not (search-printer-job-in-queue JOB machine))
then (determine-format-of-printer machine FORM)
(if (not (formats-match? form spoolclass))
then (change-printer-format machine spoolclass))
(if (not (printer-on? machine ‘on))
then (turn-on-printer machine ‘on)))
(SETQ TAKEACTION NIL)

else (SETQ machines (CDR machines)))))
(SETQ possible (COPY printers))
(while TAKEACTION do
(for p in possible do
(SETQ *queuetotal* 0)
(SETQ *smallest-queue* 10000)
(while (search-printer-job-in-queue JOB p)
do (determine-job-size job JSIZE)
(add-print-job-sizes jsize *queuetotal* QSIZE)
(SETQ *queuetotal* QSIZE)
(if (smaller-printer-queue? qsize *smallest-queue*)
then (SETQ *smallest-queue* *queuetotal*)
(SETQ printer-name p)))
(if (not (full-printer-queue?

smallest-queue *max-printer-capacity*))
then (determine-format-of-printer p FORMAT)
(if (search-printer-with-format DOUBLE format)
then (SETQ TAKEACTION NIL)
(change-printer-format double spoolclass)

else (SETQ possible (CDR possible)))
else (SETQ TAKEACTION NIL)))

(if TAKEACTION
then (for p in possible do
(SETQ *queuetotal* 0)
(SETQ *smallest-queue* 10000)
(while (search-printer-job-in-queue JOB p)
do (determine-job-size job JSIZE)
(add-print-job-sizes jsize *queuetotal* QSIZE)
(SETQ *queuetotal* QSIZE)
(if (smaller-printer-queue? qsize *smallest-queue*)
then (SETQ *smallest-queue* *queuetotal*)
(SETQ printer-name p)]

Figure 51: Logical Procedure for the SPOOL Task.

21

The procedure can be summarized as follows. There are two conditions under which

action must be taken: (1) when jobs of some format in the SPOOL file have grown beyond

a specified limit (meaning that there are not enough printers allocated to that format); and

(2) when jobs of some format have no printer allocated to it regardless of the size of that

SPOOL class (starvation). There are three types of corrective actions that can be taken in

either problem situation: (1) a printer can be taken from a job format that currently has

several printers allocated to it but doesn’t necessarily need them all; (2) a printer that is

currently turned off can be turned on and formatted as required; and (3) a printer can be

taken from a job format that needs it and temporarily given to a format that needs it more.

Figure 52: Graphic Presentation Designed for the SPOOL Task.

Graphic Presentation and Procedure. Figure 52 shows the graphic presentation

produced by BOZ. The perceptual procedure derived by BOZ can be summarized as

follows. The user of the SPOOL graphic first scans the left of the presentation looking for

stacks of bars that are higher than the 1024 limit. Such a bar indicates an overflowing set

22

of jobs. If an overflowing stack is found, the shading of this stack is noted. Next, the

user scans the right of the presentation looking for a horizontal position that contains no bar

(i.e., an empty printer). If one is found, the printer corresponding to this position can be

formatted to accommodate the overflowing jobs and the problem is solved. If no empty

printer can be found the user must try a second solution strategy. This strategy requires the

user to scan the presentation for two printers that are set up with the same format. If two

printers are found the emptier of the two printers can be reformatted to the required format,

leaving the second printer to process existing jobs. Finally, if no pairs of matching printers

can be found, the user must simply choose the emptiest printer, reformat it, allow the

overflowing jobs to process, and then change the printer back to its orignal format to avoid

a second overflow.

Analysis. Table 14 informally describes the search and computation savings offered by

the graphic presentation in Figure 52.

Table 14: Predicted Efficiency Advantages of the SPOOL Graphic

SEARCH:
When searching for a printer that is set up to print a particular format, the user can scan for those printers
whose shading matches the shading of the SPOOL class in question.

When collecting all jobs of a particular format, the user can restrict their search to a single vertical stack
since jobs are indexed by vertical position.

COMPUTATION:
Using the stacked bar chart encoding it is unnecessary to consider and add up the sizes of the individual jobs
in the queues. The user can now simply read off the height of the entire collection of jobs (the stack of
rectangles) and obtain the total sum of job sizes.

The simulation tool was used to run the alternative procedures that use the tabular and

graphic presentations to obtain quantitative estimates of the computational and search

complexity of each procedure and presentation. The results of the simulation are

summarized in Figure 53.

23

Figure 53: Simulation Results for the SPOOL Task.

Predicted search savings for the SPOOL graphic are reflected in the bar chart in Figure 53.

Note that the total number of items searched using the graphic presentation is roughly one

third of that for the tabular presentation. To individually measure the search savings

obtained through use of the stacked bar SPOOL graphic, a simulation was run that that

collects and sums SPOOL jobs separately. There was a difference of 60 items searched

between the tabular and stacked bar representations of SPOOL jobs.

5.3. Class Scheduler Interface

This third application example applies BOZ to the problem of designing an interface to a

computer system that allows students to schedule their own classes accessing and

manipulating global information about the enrollment status of all offered classes. The

design question is whether or not an interface can be designed that allows students to

24

perform their class registration task more easily and/or successfully than they can using the

traditional catalog and registration forms medium.

Task Description. The basic class scheduling task concerns choosing classes from a

catalog of available classes such that a set of needed classes are located that obey day, time,

and pre-requisite constraints. Many variations exist on this basic task such as locating a

schedule of classes that implement morning classes only, night classes only, afternoon

classes only, or 3 day per week schedules. Figure 54 shows the set of logical operators for

the class scheduling tasks. The demanding operators in the task are the search operators

that locate classes having a particular subject, number, and time. Figure 55 shows a

procedure that uses the LOPs in Figure 54 to perform the task.

25

(ClassScheduler
(DOMAINSETS (VALUE

(class NOMINAL 500)
(subject NOMINAL (art biology business chemistry chinese compsci

education french geography greek history isp japanese latin
linguistics math philosophy physics portuguese psychology
sociology
spanish))

(number ORDINAL 500)
(starttime QUANTITATIVE 144)
(endtime QUANTITATIVE 144)
(classstatus NOMINAL (ok full))
(prerequisites NOMINAL 500)
(scheduledbystudent NOMINAL (open scheduled))))

(LOPS (VALUE
(NLAMBDA when-does-class-begin? (<class> <STARTTIME>)
(ASK (Starttime <class> <STARTTIME>)))

(NLAMBDA when-does-class-let-out? (<class> <ENDTIME>)
(ASK (Endtime <class> <ENDTIME>)))

(NLAMBDA classes-do-not-overlap? (<starttime> <endtime>)
(GREATERP <starttime> <endtime>))

(NLAMBDA class-is-still-open? (<class> <CLASSSTATUS>)
(ASK (Classstatus <class> <CLASSSTATUS>)))

(NLAMBDA need-course-number? (<number> <number>)
(EQUAL <number> <number>))

(NLAMBDA sign-up-for-class (<class>)
(TELL (Scheduledbystudent <class> T)))

(NLAMBDA find-class-beginning-at-T (<CLASS> <starttime>)
(ASK (Starttime <CLASS> <starttime>)))

(NLAMBDA find-prereqs-of-class (<class> <PREREQUISITES>)
(ASK (Prerequisites <class> <PREREQUISITES>)))

(NLAMBDA find-class-in-subject (<CLASS> <subject>)
(ASK (Subject <CLASS> <subject>)))

(NLAMBDA determine-class-number (<class> <NUMBER>)
(ASK (Number <class> <NUMBER>))))))

Figure 54: Logical Operators for the Class Scheduling Task.

(LAMBDA (courseSUBJECT courseNUMBER coursesSCHEDULED)
(find-class-in-subject CLASS courseSUBJECT)
(determine-class-number class NUMBER)
(if (need-course-number? number courseNUMBER)
then (when-does-class-begin? class BEGIN)
(when-does-class-end? class END)
(if (class-is-still-open? class)
then (repeatuntil (OR (NULL coursesSCHEDULED)

(when-does-class-begin? c BEGIN2)
(when-does-class-let-out c END2)
(and (classes-do-not-overlap? end begin2)

(classes-do-not-overlap begin end2)]

Figure 55: Logical Procedure for the Class Scheduling Task.

26

Figure 56: Graphic Presentation Designed for the Class Scheduling Task.

Graphic Presentation Display and Procedure. Figure 56 shows the graphic

presentation produced by BOZ. Classes are represented by labelled lines. Class times are

encoded by the left and right ends of each line. All other information pertaining to a class is

encoded using labels. To sign up for a class the user can simply drag the class icon to the

vertical position marked SCHEDULED BY STUDENT. Figure 57 shows the

accompanying perceptual procedure derived by substituting perceptual operators (POPs) in

place of LOPs in the original logical procedure.

27

(LAMBDA (courseSUBJECT courseNUMBER coursesSCHEDULED)
(search-obj-with-label CLASS courseSUBJECT)
(read-label class NUMBER)
(if (same-labels? number courseNUMBER)
then (determine-horz-pos class BEGIN)
(determine-horz-pos class END)
(if (visible? class)
then (repeatuntil (OR (NULL coursesSCHEDULED)

(determine-horz-pos c BEGIN2)
(determine-horz-pos c END2)
(and (left-of? end begin2)

(right-of? begin end2)]

Figure 57: Perceptual Procedure for the Class Scheduling Task.

The procedure can be described informally as follows. To locate a class having a particular

subject or number, the user must search the entire presentation for an appropriately labelled

line. It is important to note that the Color primitive graphical language contains operators

sufficiently powerful to substitute all of the logical operators that manipulate class subject

information. However, BOZ’s current Xerox 1186 implementation does not have a color

monitor, hence, the Color encoding is disqualified from all designs. Note that since color

can be processed pre-attentively, the use of color would seem to greatly facilitate

performance of the find-class-in-subject operator.

Analysis. This example illustrates the limits of BOZ’s predictive capabilities. Table 15

informally describes the advantages of the graphic presentation in Figure 56 with respect to

the task.

Table 15: Predicted Efficiency Advantages of the Class Scheduling Graphic

COMPUTATION:
The user can determine whether or not two classes overlap by performing simple horizontal coincidence
judgements.

SEARCH:
Classes scheduled at a particular hour can be located by scanning a single column of the presentation.

Once a class has been scheduled in a particular time slot, search for other classes can rule out any available
classes that fall in that time slot.

28

Since BOZ finds no way of supporting the find-class-in-subject operator, no

search advantages are hypothesized. The perceptual procedure was used to generate

quantitative predictions about the utility of the graphic presentation in Figure 56 with

respect to the stated task. The simulation results reflect no savings in search or the number

of times each operator is fired. We can still hypothesize that allowing users to perform

horizontal coincidence judgements when determining time overlap between classes will be

of utility, however, BOZ’s simulation mechanism has no means of capturing this.

If we add the use of color to support the class subject operators we do obtain predictable

search savings. Figure 58 shows the simulation results for the alternative logical and

perceptual procedures when the color perceptual operators are included.

Figure 58: Simulation Results for the Class Scheduling Task.

29

5.4. Information Graphics

The following examples apply BOZ to the design of simple information graphics such as

those presented in reports, newspapers, and magazines and that are used to convey a data

set to a reader or to allow them to draw specific inferences from a set of data. Logical and

perceptual procedure descriptions and quantitative predictions about the utility of the

presentations are not given.

5.4.1 Consumer Report

The LOPs in Figure 59 describe a task in which the reader must select the best overall car to

purchase given a set of data about the make, model, price, fuel efficiency, and reliability of

a set of available cars.

(ConsumerReport
(DOMAINSETS (VALUE
(car NOMINAL 10)
(make NOMINAL (honda nissan toyota))
(model NOMINAL (crx dx 220SX 300SX civic grx grxII prelude accord))
(price QUANTITATIVE 16000)
(mbr QUANTITATIVE 24000)
(safetydevice NOMINAL (seatbelts airbags))

(LOPS (VALUE
(NLAMBDA determineMake (<car> <MAKE>)
(ASK (Make <car> <MAKE>)))

(NLAMBDA determineModel (<car> <MODEL>)
(ASK (Model <car> <MODEL>)))

(NLAMBDA determinePrice (<car> <PRICE>)
(ASK (Price <car> <PRICE>)))

(NLAMBDA cheaper? (<price> <price>)
(LESSP <price> <price>))

(NLAMBDA determineMPG (<car> <MPG>)
(ASK (Mpg <car> <MPG>)))

(NLAMBDA moreEfficient? (<mpg> <mpg>)
(GREATERP <mpg> <mpg>))

(NLAMBDA determineMBR (<car> <MBR>)
(ASK (Mbr <car> <MBR>)))

(NLAMBDA moreReliable? (<mbr> <mbr>)
(GREATERP <mbr> <mbr>))

(NLAMBDA determineSafetyDevice (<car> <SAFETYDEVICE>)
(ASK (SafetyDevice <car> <SAFETYDEVICE>)))

Figure 59: Logical Operators for the Consumers Task.

The graphic designed by BOZ to support the task is shown in Figure 60. The perceptual

procedure for finding the best car can be informally summarized as follows: “find the

30

tallest, leftmost car that is positioned the highest along the vertical scale.” This procedure

can be shown to locate that car that optimizes the three evaluation criteria.

Figure 60: Graphic Presentation Designed for the Consumers Task.

The graphic in Figure 60 combines two graphical conventions that, when used together,

may cause users to erroneously interpret the data. In the graphic in Figure 60, the

reliability of a car (mbr: miles between repairs) is encoded by the vertical position of the

bottom edge of each box. The mileage per gallon is represented by the height of the boxes.

Tufte (1983) points out that readers often become confused when size dimensions are used

to encode one domain set of information while the axis corresponding to that same

dimension is used to encode another domain set. Users of the Consumer graphic might

conclude that the height of the box in intended to encode a range of values for reliability.

Similarly, users might become confused when deciding where to measure the vertical

position of the boxes. In other words, they may not know whether to read off the miles

between repairs from the bottom or top of the boxes. This same effect is observed when

31

the Width primitive graphical language is used together with the Horizontal Position

language, and when Area is used together with Horizontal Position and Vertical Position.

Decisions about which primitive graphical languages to allow in the same presentation fall

beyond the scope of BOZ. Consequently, BOZ parameterizes this design decision,

allowing the user of BOZ to decide themselves by setting a global parameter. The

presentation in Figure 61 is produced by BOZ when the combined use of Vertical Position

and Height is disallowed.

Figure 61: A Second Graphic Presentation for the Consumers Task.

5.4.2. Employees

This example illustrates how BOZ can design presentations containing more than one

graphical object. Figure 62 describes a simple task of determining the names of all

employees of a particular company.

32

(Employees
(DOMAINSETS (VALUE
(employees NOMINAL 10)
(name NOMINAL (steve ken lael heather julia anne

gale winston alison ben))
(company NOMINAL (apple ibm xerox sun adobe quark

uswest nynex nasa mcc))))

(LOPS (VALUE
(NLAMBDA find-any-employee-within-company (<EMPLOYEE> <company>)
(ASK (Company <EMPLOYEE> <company>)))

(NLAMBDA determine-employee-name (<employee> <NAME>)
(ASK (Name <employee> <NAME>)))

Figure 62: Logical Operators for Employees Task 1.

Figure 63: Graphic Presentation Designed for Employees Task 1.

Figure 63 shows the graphic produced by BOZ to support this task. Figure 64 describes a

related task that requires the user to find a particular employee and report the name of the

company at which the employee works.

(Employees

33

(DOMAINSETS (VALUE
(employees NOMINAL 10)
(name NOMINAL (steve ken lael heather julia anne

gale winston alison ben))
(company NOMINAL (apple ibm xerox sun adobe quark

uswest nynex nasa mcc))))
(LOPS (VALUE
(NLAMBDA find-particular-employee (<EMPLOYEE> <name>)
(ASK (Company <EMPLOYEE> <name>)))

(NLAMBDA determine-company-of-employee (<employee> <COMPANY>)
(ASK (Name <employee> <COMPANY>)))

Figure 64: Logical Operators for Employees Task 2.

Figure 65 shows the graphic produced by BOZ to support this task.

Figure 65: Graphic Presentation Designed for Employees Task 2.

The two related tasks require that the same set of information be indexed in two different

ways in order to expedite search for a specific individual or company. Now suppose we

combine both sets of LOPs and submit them to BOZ. This task is essentially a request for

34

a presentation that indexes the information in both ways. Figure 66 shows the graphic

produced by BOZ for this combined task.

Figure 66: Graphic Presentation Designed for A Combination of Employees Tasks 1 & 2.

BOZ produces the presentation in Figure 66 by creating two separate presentations and

composing them. Note that axis composition is more complicated than simply overlaying

two images for two reasons. First, it must be observed that the label encodings for

company and employee information appearing in the presentations in Figures 63 and 65 are

subsumed by the axes of the partner presentation that it is being composed with. Second, a

simple overlay of the two presentations would result in two points appearing in each entry

in the plane. Hence, a second observation is that the two points marking the positions on

each axis can be merged using the graphical object composition rules given in Table 8.

35

5.5 Conclusion

The examples presented above are simplistic in the following way. The domain sets and

logical operators appearing in each task description comprise what psychologists refer to as

a problem space [Newell and Simon, 1972]. It is widely held that complex information-

processing tasks typically draw on many problem spaces, some of them poorly understood

or unidentifiable. The examples presented in this chapter are all defined using a single

problem space. This was achieved in two basic ways: (1) by selecting closed-ended and

reasonably well understood (e.g., the information graphics examples); or (2) by choosing

restricted, well understood portions of the task (e.g., the airline scheduling and class

scheduling examples). For example, the general airline scheduling problem likely

considers other dimensions of information such as the customers’ personal feelings about

the reliability of a carrier, or uses more sophisticated search criteria that places different

degrees of importance on time, cost, and place information when selecting a flight. To the

extent to which the problem spaces for each task are considered simplified, the examples

presented above must be considered partial or even “toy” solutions. The more general

question of BOZ’s usefulness for tackling many-problem space tasks must await its

application to more sophisticated task analyses.

1

CHAPTER 6

EXPERIMENTAL STUDY OF GRAPHIC DESIGN EFFECTIVENESS

An empirical study was conducted to test the effectiveness of the task-analytic presentation

design and evaluation techniques proposed in earlier chapters. Participants performed an

airline reservation task using a set of four experimental presentations, each presentation

including an additional opportunity to reduce search or computation. Task performance

times were used as a dependent measure of the cognitive work being done while

performing the task, the measure BOZ’s design process aims to minimize. There were two

basic goals of the experiment: (1) to measure to what extent the hypothesized advantages

of the BOZ-designed airline schedule graphic were reflected in participants’ performance;

and (2) to attempt to understand which procedures participants followed when performing

the task. Taken together, these two questions pose the more critical question of whether

BOZ’s design and theoretical evaluation components are presently reliable enough to

proceed without the use of costly empirical evaluation.

6.1 Method

Participants. Seven employees of the Learning Research and Development Center at the

University of Pittsburgh voluntarily participated in the study. Participants were not paid

for their participation. The only criterion used for participant selection was that the

individual had not previously been exposed to the presentations used as stimulus materials

in the experiment.

Materials. There were a total of forty problems, ten problems using each of a set of four

experimental presentations of airline schedule information. Examples of these

2

presentations are shown in Figure 67. Each presentation contains an additional opportunity

to reduce computation or search. Each successive presentation contains all of the

advantages of the previous ones plus an additional advantage.

Apparatus. The airline schedules were presented as 9 x 12 inch screen images on a

Xerox 1186 computer. A mouse was used by the experimenter to control the presentation

of the airline schedules. The mouse was also used to control the system clock that

measured participants’ performance times. Since participants typically traced their fingers

across the computer screen when performing the task, the stopwatch was controlled by the

experimenter.

Procedure. Participants performed the airline reservation task forty times, ten times using

each version of the airline schedule presentation. To counterbalance learning and practice,

seven rotations (one for each participant) of presentation were used (i.e., 1234, 2341,

3412, 4123, 4321, 3214, and 2143). At the start of the experiment, all of the perceptual

operators were explained. Participants were shown the procedure that best exploited the

advantages of each presentation (i.e., Presentation 1 = rowSearch; Presentation 2 =

rightOfSearch; Presentation 3 = rightOfSearchU; Presentation 4 = rightOfSearchU)1 but

were told they could follow any procedure they wished. Participant’s task was to find any

flight that satisfied the problem criteria. There was one practice trial with each of the four

presentations. Participants were told not to guess, and to work as quickly as possible

without compromising the accuracy of their responses. Participants were told that they

could rest between any two graphics and that the total time to complete the experiment was

irrelevant. Time to complete the session was typically forty minutes.

1See Chapter 4 for descriptions of the four different procedures.

3

Figure 67: Four Experimental Graphics

4

6.2 Theoretical Predictions

Based on the analyses of the airline schedule presentations given in Chapter 4, the

following predictions were made about participants’ performance for the airline reservation

task.

Global efficiency. Each presentation supports the advantages of the previous one as

well as the ones it introduces. Therefore, the first prediction is that task performance time

should be linearly ordered as in Figure 67 with the tabular presentation worst and the

graphic airline schedule best.

Reductions in Computation. Recall that the simulation tool described in Chapter 4 is

presently unable to produce quantitative estimates of the time required to execute each

logical or perceptual operator in a task. However, if response times are expressed as a

function of the number of times each operator is executed, the coefficients of a well-fitting

regression model yield estimates on the performance times for each operator. It was

hypothesized that the times associated with the demanding logical operators (i.e.,

computeLayover and addCosts) should be smaller for graphics that support

substitution of visual operators. Since the determineCost, determineDeparture,

and determineArrival operators are unnecessary for Presentations 2 through 4, these

savings should be increased. Table 16 summarizes the computational advantages of the

four displays.

5

Table 16: Predicted Computational Advantages of the Four Experimental Airline Schedules

PRESENTATION 1
Presentation 1 does not allow the user to substitute any perceptual operators.

PRESENTATION 2
Presentation 2 substitutes a horizontal distance judgement for the computeLayover logical operator. The
layoverLessThanN? logical operator is substituted by the perceptual task of estimating the relative size of
the horizontal interval between two flights. Performing the logical operators determineDeparture and
determineArrival is unnecessary.

PRESENTATION 3
Presentation 3 additionally allows users to perform the shaded? operator in place of the
determineAvailability operator.

PRESENTATION 4
Presentation 4 substitutes the perceptual task of judging the combined height of two flight boxes for the
addCosts logical operator. The logical operator determineCost is unnecessary.

Reductions in Search. The simulation results predict several search reductions gained

due to locality, indexing, or the use of parallel operators. Table 17 lists six hypothesized

search procedures that explain the three ways in which search can be curtailed. If users are

able to follow the search procedures hypothesized for each airline schedule, a regression of

response times to the total number of items searched should produce good fits for

procedures that users follow and poor fits for procedures not used.

6

Table 17: Predicted Search Advantages of the Four Experimental Airline Schedules

PRESENTATION 1
rowSearch: Spatially organizes information about flights into rows and columns of a table. When
searching for information about a particular flight, the user need only locate the appropriate row and column
and restrict their search to those items.

PRESENTATION 2
rightOfSearch: When searching for a connecting flight (i.e., a <city>-MEX flight), limit search to only
those flight boxes appearing to the right of the originating flight. Users can also eliminate connecting
flights that appear to the extreme right of the graphic since these flights obviously disobey the layover
constraint.

PRESENTATION 3
rightOfSearchU: When searching for an originating or connecting flight, limit search to only unshaded
flight boxes since others have no available seats.

PRESENTATION 4
rightOfCheapSearchU: When searching for a connecting flight, eliminate “tall” flights (i.e., flight
boxes whose height combined with the height of the originating flight box exceed the $500 limit).

6.3 Results and Discussion

Global efficiency . Figure 68 shows the mean response time for each presentation

(excluding five times differing by more than three standard deviations from the problem

mean and the three to six erroneous responses for each presentation). Presentation used

had a highly significant effect on response time (F(3, 239) = 52.719, p < .0001), and also

on the variance of response time (F(3, 24) = 18.649, p < .0001). Fischer’s PLSD for

pairwise comparison indicates indicates no significant difference between version 3 and 4

and differences significant at the .05 level between other presentation pairs for both mean

response times and standard errors of the mean. Presentations 3 and 4 produce both the

lowest response times and the least variable performance. Presentations 2 and 1 each in

turn produce significantly higher response times and greater variability. The perceptual

operators and search savings supported by Presentations 2 and 3 together had the predicted

effect on global efficiency. But allowing users to perform judgeHeights (instead of

addCosts) produced no observable effect.

7

Figure 68: Participants’ Mean Performance Times for the Airline Reservation Task.

Computation and search reductions. The next step was to try to understand how

participants obtained the observed efficiency advantages, that is, to understand how the

time savings could be attributed to the advantages of the presentations that we

hypothesized. The first step in this analysis was to attempt to identify which search

strategy participants followed for each presentation. Five regression models were created,

one for each of rowSearch, rightOfSearch, rightOfSearchU, and two variations on the

rowSearch procedure in which the order of the operators was rearranged. These two

additional procedures are referred to here as closeSearch and cheapSearch. closeSearch

proceeds by considering first those pairs of flights that appear closest together in the

presentation. cheapSearch proceeds by considering the shortest flight boxes first.

Only the three parallelizations of the rowSearch procedure provided reasonable fits to the

data (closeSearch and cheapSearch did not). Differences in goodness of fit between the

8

three parallelization models were not significant, preventing conclusions to be drawn about

which procedures participants applied to which presentations.

Based on these results, the following process was used to assess the effect of substitution

of perceptual for logical operators. For each display the most efficient rowSearch

procedure supported by that presentation was assumed (i.e., rowSearch for the tabular

presentation, rightOfSearch for Presentation 2, and rightOfSearchU for Presentations 3 and

4). It was assumed that the time for one search step was the same in all presentations

(although the number of such steps varied with the search procedure supported).

A regression of response times to the number of search steps and cost and layover

computations produced a well-fitting statistical model with F(4, 238) = 73.108, p < .0001,

R2 = .48. Removing from the model the counts for either search or checking layovers

dramatically reduced the fit. In contrast, removing the counts for checking costs had no

effect on the fit. This model yielded the following parameter estimates:

• One search step requires 330 ± 35 milliseconds.

• The determine-horz-distance operator is 2 ± .25 seconds faster than the

subtractTimes operator.

• The judge-heights operator is negligibly 100 to 300 milliseconds slower than the

addCosts operator.

These results are consistent with the global time differences given above. The reduced

performance time with successive presentations arises for two reasons. First, attending

only to boxes to the right of the current box and to unshaded boxes reduces the number of

items that must be searched. Second, substitution of determine-horz-distance for

9

subtractTimes produces a substantial savings in time. In contrast, the judge-

heights provided no such advantage. This may have occurred since it is the one

perceptual operator that requires integrating quantitative estimates from two different spatial

locations. These two effects are sufficient to account for the response time differences

between Presentations 1 through 3, and the lack of difference between Presentations 3 and

4.

We can hypothesize that differences in standard deviation between presentations suggest

that participants were able to more quickly acquire skill at using the more cognitively

efficient solution strategies.

The fact that the regression models did not provide strong enough fits to pinpoint which

search strategy participants followed suggests that participants did not all visit the same

items in the same order when performing the task. There are many subtle variations on

each strategy in which participants may adjust the order in which they visit the items in the

display. For example, when using Presentation 4, participants may have searched the left-

hand side of the presentation from top to bottom and the right-hand side from bottom to

top. This minor variation would cause participants to find the solution earlier or later than

would the standard rowSearch procedure. Such variations in search strategy may not

necessarily be intentional. Performing the more complex strategies such as rowSearch

requires the use of a fairly sophisticated pointer-keeping technique so that users may keep

their place in the presentation, not visiting a single item more than once. It may have been

that participants intended to follow a version of the rowSearch procedure but were unable

to do so. Alternatively, some participants may have completely abandoned the rowSearch

procedures and followed some other strategy in which they skipped around in the

presentation randomly until they found a solution. This effect was found by van Nes et al

(1987) in a similar study of graphic presentation use. van Nes et al were able to generalize

two groups based on search strategy followed: “readers” and “hoppers.” Readers scanned

the display in the manner described by the rowSearch procedure. Hoppers followed the

10

more random procedure by skipping around in the presentation trying to locate the solution

more quickly by chance. The van Nes et al data introduce another possibility as well. It

seems that users must spend some amount of time visiting locations within the display

where no items are present to verify the fact that no items appear there. The time spent

doing this seems to vary between participants and may be a function of the visual

processing skill of the individual user.

6.4 Conclusion

The results suggest that participants’ performance with the BOZ-designed graphic

presentations reflect the cognitive efficiency advantages that lie at the core of BOZ’s design

approach. Further, it is important to note that the theoretical predictions obtained using the

simulation tool described in Chapter 4 fairly well accounted for users’ performance in

advance. This suggests that the methods for generating theoretical predictions could at

some point be used in practical situations in lieu of experimentation with real users. One

important limitation seems to presently disallow the use of theoretical predictions alone as a

means of reliably demonstrating effectiveness. BOZ’s ranking system for perceptual

operators will require more empirical observation before it is able to make reliable

predictions. The experiment reported here showed that BOZ hypothesized that the

judge-heights perceptual operator would be performed more efficiently than mental

addition. This assumption proved to be false in practice. It is likely that future experiments

that test graphics that use many different graphical conventions will uncover other problems

with BOZ’s operator ranking approach.

1

CHAPTER 7

CONCLUSIONS AND DISCUSSION

7.1 Summary

The research described above adopts a task-analytic approach to the design of graphic

presentations that are customized to the requirements of specific tasks. The important

distinction made in a task-analytic design methodology is that the effectiveness of a graphic

presentation depends on choosing the right graphic for the right task. That is, the utility of

a presentation is linked to the nature of the task to be supported more than the information

to be represented. An important goal was to create a design theory that was detailed

enough to relate hypothesized advantages of graphic presentation-based task performance

to particular graphic design features. The task-related advantages of graphic presentations

were used to articulate a technique for transforming descriptions of logical procedures and

facts into informationally equivalent perceptual procedures and graphic presentations. The

task-analytic design approach was also used to create measures of cognitive complexity that

allow logical and alternative perceptual procedures to be compared. The implementation of

the design theory, BOZ, was used to design perceptual procedures and graphic

presentations to support performance of a set of real-world tasks. An empirical study was

conducted to determine the extent to which the advantages of one BOZ-designed

presentation were reflected in participants’ performance of the target task.

7.2 Contributions

Design of Effective Graphic Presentations. What are the real graphic design

successes of BOZ? Has BOZ produced a graphic that no one else has designed before?

Given its current set of perceptual operators and graphical presentation objects it is unlikely

2

that BOZ will produce new graphic designs that differ radically from existing designs.

That is, in the examples developed in this dissertation, no graphic seems to contain a shape

or a configuration of shapes that strikes the reader as being completely novel, having never

appeared in a graphic used in one domain or another. This comes as little surprise as the

study of novel spatial elements and their mathematical properties enjoys centuries of prior

investigation. Rather, the contribution of the present version of BOZ lies in forming

compositions of existing designs to arrive at presentations that gather the relevant features

of several individual designs to arrive at “customized” presentations that support the

operators in a target user task. It is important to note that the degree of customization

achieved by each presentation is more than a simple collection of useful presentations

implicated by a task description. Rather, BOZ is additionally able to assign degrees of

importance to the individual operators in a task and use this information to make sacrifices

in less important aspects of a task to facilitate efficient perceptual processing in more

demanding aspects of the same task.

A second graphic design contribution is the technique for obtaining quantitative predictions

about the relative utilities of a set of alternative presentations with respect to a target task.

These measures may eventually allow designers to assess the effectiveness of a

presentation design without performing costly empirical evaluations. The present design

evaluation model fails to predict two important task performance measures, namely,

performance times for the perceptual operators in BOZ’s catalog and measures of individual

differences in skill among users. These limitations are discussed in Section 7.3.

A Formalism for Describing Perceptual Inference Procedures. A second

contribution of the research is to advance a working formalism for describing perceptual

inference procedures. The formalism is used to capture perceptually executed procedures

using the same framework used to describe abstract procedures. Having a formal

representation for perceptual inference procedures also allows us to make detailed

3

comparisons between alternative procedures, within the same modality as well as across

modalities.

An important obstacle to constructing any descriptive model of perceptual inferencing is

that our understanding of how humans perform many primitive perceptual tasks is largely

incomplete [Ullman, 1984]. The formalism proposed here circumvents this obstacle by

treating perceptual operators as black box functions that describe perceptual inferences only

in terms of the inputs they receive and the outputs they produce. The price paid in making

this assumption is that it is in general impossible to understand what low-level perceptual

procedures users are following when performing a task. Chapter 6 showed how this

prevents us from drawing strong conclusions from experimental data collected from users

during task performance.

The perceptual task formalism is organized around the set of primitive graphical languages

listed in Appendix 1. Each primitive graphical language contains the following items: (a)

the perceptual operators associated with each language; (b) the graphical objects that are

manipulated by the perceptual operators; and (c) the general form for expressing graphical

facts using the graphical language. The formalism can be used to create working

descriptions of arbitrary perceptual procedures. Perceptual procedures are ordered

sequences of calls to the set of perceptual operators. Input data to a perceptual procedure

are defined using the general forms for graphical facts. Once a perceptual procedure and

set of graphical facts has been created they can be executed using BOZ’s simulation tool.

Section 7.3 discusses several limitations of the perceptual procedures that are automatically

generated from logical procedures submitted to BOZ.

Automated Graphical Presentation. Aside from an algorithmic specification of a

design theory for graphic presentations, BOZ appears potentially useful as a tool for the

automated design and generation of graphic presentations in computer information systems.

4

However, two limitations of the present version prevent BOZ’s current use in real-time

applications: (a) the need to hand-generate the task descriptions required by BOZ as input;

and (b) the run time of BOZ’s current implementation. Both of these issues are discussed

in detail in Section 7.3.2.

7.3 Limitations of BOZ

7.3.1 Cognitive Issues

Learning graphical conventions and procedures. An important aspect of the utility

of a graphic presentation not directly addressed in the task-based graphic design theory is

the time required to understand the procedures that must be followed to use that

presentation successfully, and to acquire the skills necessary to perform them.1 There

seem to be no inherent advantages of learning a perceptual procedure instead of a logical

one even if that perceptual procedure is eventually performed more efficiently. The

learning issue is relevant when graphics are presented in “walk up and use” situations

where it is unsafe to assume prior knowledge or skill on the part of the user. Learning

issues are less important in skilled performance task situations. Three features of BOZ

raise important issues that pertain to learning graphical conventions and procedures.

First, the very idea of presenting users with different presentations customized to different

tasks by definition increases the number of new graphic conventions that the user must

learn and raises important issues related to user interface consistency [Shneiderman, 1985].

Since choices made about how to allow users to perceptually obtain a result during a task

critically depend on the other requirements of that task, it is routinely the case that the user

must perform different perceptual operators to obtain the same result in different tasks. For

example, the airline graphic in Figure 24 requires the user to search for an appropriately

labelled rectangle to locate a flight originating in a given city. On the other hand, the airline

graphic in Figure 36 requires the user to search the horizontal axis to locate this same

1 Weintraub was first to make the point that the visual procedures required to use a graphic have to be
learned and that the time required for this learning is a significant graphic design parameter.

5

information. Since the conventions are inconsistent between the two presentations,

arguments about failing to exploit procedural transfer or even causing negative transfer can

be made [Kieras and Polson, 1985]. This issue reduces to the following question. Do the

benefits of presentation customization outweigh the increase in learning time due to

inconsistency? The answer to this question of course is unique to the specific goals of each

task situation (e.g., the utility of computers seems to generally outweigh the two years

required to learn to program them but this depends on the application in which they are to

be deployed). The answer to this question also depends on having a sense of the value of

consistency, a measure upon which two investigators seldom agree [Grudin, 1990].

Second, one strategy used by BOZ for minimizing the learning time for a set of graphical

conventions is to maintain one-to-one correspondences between primitive graphical

languages and relational domain sets. Graphics in popular use routinely violate the one-to-

one correspondences principle in two ways. First, graphics sometimes use two or more

perceptual dimensions to redundantly encode a single dimension of information. For

example, some bar charts redundantly represent quantities with both the height of the bars

as well as shading or color. The user of the bar chart can either judge the height of the bar

or determine its color to arrive at a quantity. In these cases it is assumed that allowing the

reader a choice between several perceptual procedures for extracting a single datum or

obtaining a single result has benefits in that the presentation may be more flexible or allow

the reader to corroborate the inferences they draw using separate procedures. Kosslyn

(1989) and Ohlsson (1987) argue the opposite case: that allowing redundant encodings

only serves to confuse the reader when mapping perceptual dimensions onto the

dimensions of information being displayed. Tufte (1983) presents a similar argument

relating learning complexity to the amount of “data ink” appearing in a graphic. Second,

many graphics use extraneous perceptual dimensions as ornamentation to make graphics

look more appealing. Tufte (1983) criticizes this practice claiming that graphical

decorations complicate learning. Arguments made against the use of redundant or

6

decorative graphical dimensions assume (perhaps correctly) that reader approaches the

learning problem using a forward search strategy, first collecting the perceptual dimensions

appearing in a graphic, and then mapping them to the data dimensions being conveyed. A

backward search strategy proceeds by first noting the data dimensions to be conveyed and

then locating the corresponding perceptual dimensions that encode them. It is

straightforward to show that redundant encodings increase learning time when forward

search is used and decrease learning time when backward search is used. What search

strategies users actually follow along with the status of redundant encodings is an open

question, with no particular argument yet supported by data.

Third, a second way in which BOZ tries to minimize learning time is that when choosing

graphical presentation objects, BOZ always selects the simplest object (of <point>, <line>,

<rectangle>, and <polygon>) that is sufficient to encode all of the relations appearing in the

perceptual data structure for that object. Tufte (1983) argues that learning time is

minimized when a graphic uses the minimum amount of “data ink” to encode a data set.

For example, plot charts and bar charts are popularly used to display a set of values to

support simple comparison tasks. Tufte argues that the plot chart is the better presentation

since it encodes the same information as the bar chart using less data ink. The data ink

argument is rooted in the observation that the graphical objects in the bar chart also have

width, area, and shading which may entice the reader into thinking that they are

meaningful. One qualification of this point is necessary. All graphic presentations

necessarily use all of the graphical dimensions (primitive graphical languages). For

example, the points in the plot chart indeed have a color, height, width, area, slope,

connectivity, etc. One can argue the case that these dimensions may also distract the

reader’s attention. Thagard (1989) distinguishes these two cases by arguing that the

reader’s attention will be attracted only when the values of these dimensions vary

unnecessarily within a presentation. That is, the reader will attend to the color of a set of

points in a plot chart only when the color of the points varies unnecessarily.

7

Two further issues are relevant to the task of learning a new perceptual procedure. First,

many users have previous experience using graphics that not only improve their

performance of specific perceptual operators, but also provide practice in assigning

interpretations to them. That is, the process of learning a perceptual procedure that

manipulates information about time along a scaled horizontal axis is facilitated by practice

that users have had with other graphics that use that same convention. Second, many

graphic presentations exploit learned real-world conventions and metaphors. For example,

a graphic presentation of a set of politicians and their relative political stances could exploit

the “right/left” convention used in everyday conversation, conservative politicians being

placed on the right side of a horizontal axis, liberals to the left.

Descriptiveness of BOZ’s Perceptual Procedures. Perceptual procedures are

produced by BOZ using the simple strategy of substituting the names of the selected

perceptual operators in place of the names of the original logical operators in a logical

procedure. This raises an important question about the amount of descriptiveness captured

in the perceptual procedures produced by BOZ. This question can be asked at two levels:

(1) about the perceptual operators themselves; and (2) about the perceptual procedures

defined using the perceptual operators.

At the perceptual operator level, BOZ has no characterization of human perceptual

processing beyond the logical specifications that comprise the perceptual operator

definitions. That is, perceptual operators are nothing more than logical inferences that have

been relabeled with suggestive names. This is the notion of a mathematical renaming, the

basis for the notion of substitution given in Definition 1, and the core assumption

operationalizing BOZ’s approach. Because of this “black box” approach, perceptual

operators (and the perceptual procedures constructed using them) do not formally capture

the representation-dependent context in which inferences are performed. An example of

8

this is the difference between search for a fact in a factbase and search for a point in the

plane. The perceptual operator does not contain procedural descriptions of scanning the

eye across a horizontal axis, recognizing a label, running one’s finger up the column

defined by the horizontal position, and scanning for the desired object.

At the perceptual procedural level, in addition to propagating the uncertainties of each

individual POP appearing in a procedure, BOZ’s perceptual procedure derivation technique

is not able to create alternative perceptual procedures defined over a single graphic

presentation beyond what is derivable through application of the operator parallelization

rules. This is especially important when alternative strategies derived through operator

reordering are likely to be followed by users. The graphic in Figure 36 was an example for

which users are likely to follow a procedure that differs from the one generated by BOZ by

way of the order in which the operators are applied. It was shown that alternative

procedures derived through operator reordering are of equal efficiency in general. What is

potentially lost however is an accuracy to which the BOZ-generated perceptual procedures

describe the steps that users actually follow.

Two basic points defend BOZ’s operator substitution approach. First, the descriptiveness

of any perceptual operator is upper-bounded by the depth of our understanding of how

humans actually perform primitive perceptual tasks. Ullman (1984) reviews work in this

area and concludes that the details of primitive perceptual task performance are largely

undiscovered, providing many examples of simple perceptual tasks, such as inclusion

judgements, for which there is no agreement upon even the overall strategies used by

humans. In the absence of details about primitive tasks, investigations of graphic utility for

complex information-processing tasks may well best be described as “playing twenty

questions with nature [Newell, 1973].” Strong assumptions about how perceptual tasks

are performed may provide little leverage in predicting presentation utility.

9

Second, the problem of deriving alternative, more efficient procedures from existing

procedures is an instance of the more general problem of analysis of algorithms known to

be not computable by algorithm in general. We can adjust the question by asking whether

or not we can write a list of transformation rules that capture known procedural “shortcuts”

that allow the same graphic to be used in a different way to obtain the same result. While

no such list of rules presently exists it seems promising that future studies of perceptual

task performance may begin to catalog them.

Social and ethnographic factors in graphic presentation use. Other works have

investigated social factors involved in graphics use. Understanding the conventions used

in a novel presentation appears to be highly sensitive to culture [Hudson, 1968; Garfinkel,

1972; Cahill, 1976]. That is, different groups may be more pre-disposed to assign

meanings to a set of graphical signs and symbols other than the meanings chosen by BOZ.

Also, perceptual task performance itself may differ among groups since different groups

may have skill or experience using graphical conventions different from those used by the

populations of users studied here (or in using none at all). In this case, the set of

perceptual operator rankings used by BOZ would inappropriately describe what is

performed most efficiently by these groups. This evidence suggests that social factors

influencing the learning and performance of perceptual procedures lies outside the scope of

available information-processing models of cognition and certainly outside the scope of any

formal theory of graphical syntax and semantics. Future investigations of the pragmatic,

cultural, and social aspects of graphics use are likely to prove at least as useful as results

that address syntax and semantics.

Performance time predictions. Another limitation of BOZ is that without exact

quantitative estimates of the difficulty of logical and perceptual operators, BOZ is unable to

make predictions about the time required to complete a perceptual procedure using a graphic

presentation. Instead, BOZ produces a ranked set of alternative perceptual procedures that

10

accomplish a stated goal. Two special circumstances seem to prevent BOZ from achieving

reliable zero-parameter performance time predictions. First, unless the complexity of

primitive logical and perceptual operators were completely independent of presentation,

task, and context, the wide variety of uses of presentations would seem to disallow making

general predictions. Second, other investigators have shown that the level of perceptual

skill of the user greatly affects important measures of their performance. Hence, BOZ’s

predictions could at best predict mean performance times for large populations [Kieras and

Polson, 1985]. As variance between tasks and users become large, the meaningfulness of

these predictions decreases.

7.3.2 Automated Graphic Design Issues

Hand-Generated Task Descriptions. The descriptions of logical procedures required

by BOZ as input must presently be hand-generated. This prevents BOZ from being used

directly by end users. A future research topic is to investigate ways of automatically

generating task descriptions, eliminating the need for human intervention. SAGE [Roth et

al, 1989] uses a discourse processor that allows descriptions of simple operators to be

generated by analyzing simple natural language queries made by the user. However, this

approach is unable to generate descriptions of complex procedures defined using

collections of many operators. An alternative approach to lowering the boundaries to task

specification is to generate task descriptions from user queries expressed using a restricted

database/factbase query language. A Prolog-like query language has been partially

implemented that allows the user to type queries into a dialogue window. These queries are

then compiled into the standard LOP notation used by BOZ. An example query using this

language is shown in Figure 69.

flight(F):-departure(F) > 9:00, arrival(F) < 18:00,
cost(F) < 300, availability(F) = ok.

Figure 69: A Prolog-like Factbase Query Language

11

BOZ’s Run Time . While the run time complexity of BOZ may theoretically be able to

meet the demands of on-line information systems, the present implementation fails to

produce graphics in a time that would be considered acceptable by computer users. The

rendering component is particularly slow for graphics containing many graphical objects.

The search complexity for BOZ’s perceptual operator substitution component is presently:

Toperator substitution = n * c * t, where n is the number of logical operators appearing in a

procedure, c is the number of possible operator classes that each logical operator must be

matched against, and t, the time required to find all matches for a single operator. The

Xerox 1186 implementation of BOZ required about twelve seconds to classify the airline

reservation task operators (14 operators matched against 11 operator classes) shown in

Figure 14. BOZ’s perceptual data structuring algorithm is linear in the number of logical

operators, n, and domain sets, d: Tdata structuring = n * d. BOZ required less than one

second to design the initial perceptual data structure shown in Figure 18. The perceptual

operator selection component runs nlog(n) in the number of logical operators: Toperator

selection = n * (n - s), where s is the number of operators that have been selected thus far.

The perceptual operator selection component required six seconds to select the perceptual

procedure and data structure shown in Figures 19 and 20. The rendering component is

linear in the number of structured facts to be presented, f, and the number of primitive

graphical languages, p, appearing in each structured fact: Trendering = f * p. The rendering

component required approximately eighteen seconds (including logical to graphical fact

translation) to render the flights presentation in Figure 24 and approximately one minute

fifteen seconds to generate the seating chart presentation in Figure 25.

Overall, BOZ designed both presentations in about nineteen seconds, rendering the flights

and seating charts presentations after thirty-seven seconds and one minute forty-five

seconds, respectively. BOZ’s current run time does not fall within an acceptable standard

for real-time data presentation. A future research topic is to investigate more efficient

implementations of BOZ.

12

7.4 Other Advantages of BOZ-Designed Graphic Presentations

Working memory advantages. Limitations on the capacity of short-term memory

introduce an everyday feature of performance of complex information-processing tasks:

that items are often lost during problem solving when the number of items that must held

temporarily in memory exceeds a given limit. Graphic presentations appear to help alleviate

this problem in three ways. First, an additional advantage of step skipping (see Chapter 1)

is that eliminating operators from procedures relieves the user from having to maintain the

results of those operators in working memory. For example, for the airline reservation

task, when determining the layover between two flights using logical or tabular

representations, it is necessary to first look up the departure and arrival times, maintain

them in working memory, and then perform the subtraction. At this point the two

individual times can be replaced with the single layover time. Using the graphic

presentation, the look up steps may be skipped. That is, the user can simply determine the

layover and store this in working memory. Second, perceptual data structuring often

groups multiple facts in a single perceptual chunk. This allows users to store a single

perceptual chunk in place of a set of individual facts. Third, when items are lost from

working memory, the efficiency at which many perceptual operators are performed

suggests that graphic presentations may allow users to more quickly retrieve or recompute

lost items.

Efficient Referencing. Graphic presentations also facilitate efficient referencing.

When used for communication, graphics allow users to substitute pointing in place of more

elaborate verbal reference-securing. Football diagrams allow players to quickly reference

individual players, formations, and paths of motion. The use of pronouns and adjectives

such as it, him, this, here, etc. indicate that “chalktalk” sessions between players and

coaches rely heavily on the use of pointing for reference-securing.

13

7.5 Advantages of Graphic Presentations Not Addressed by BOZ

Control knowledge . Larkin (1989) points out that another advantage of graphic

presentations is that they sometimes encode information about the state of a problem

solution as well as indications to the next step that must be performed. Consider the

problem of determining the number of possible paths from one point in a city to another. If

we represent the problem as a graph, we can quickly obtain the answer in the following

way. If we number the node corresponding to the starting point 0, we can number each

successive node so that it is the sum of the two node previous nodes leading back to the

starting point as shown in Figure 70.

house

school

1 2 3

5 9

0

21

4

14

1 1

2

1 1

5

 Figure 70: A Graphic Presentation Containing Control Information

If we number all of the nodes in the graph in this fashion the number placed on the final

node (the endpoint) is the number of unique paths from the starting point to the ending

point. At each step in the problem the next step in the solution is easily identified as

labeling that node(s) that is both unlabeled and exactly one node away from the node last

labeled. In this way control information about the algorithm is directly encoded in the

problem representation. Koedinger (1989) describes a similar protocol example in which a

geometry expert began to place numbers on sides of a geometric figure. The numbers were

used to make rapid inference about proportional relationships between the sides of the

figure. The process of “filling in the blanks” on the geometry figure led the expert to an

immediate solution after struggling with the problem for 45 minutes. Larkin and Simon

(1987) make the same point in showing how application of problem-solving operators is

guided by the ropes connecting a set of pulleys in a mechanics problem.

14

Despite the apparent encoding of control information in the examples and their utility to the

problem solver, it is not clear that such control schemes follow from first design principles

and can be replicated in arbitrary situations, or are epiphenoma of other representation

features.

Improving Recall for Data. Graphics also appear to help users recall presented data.

In fact, the memorability of graphic presentations was William Playfair’s main argument

for using them. Experimentalists such as Washburne (1927) have shown graphics to be

useful along this dimension but not in an unqualified sense. Washburne showed that the

way data is laid out in a particular graphic design can effect users’ ability to recall that data.

Figure 71 shows two bar charts that differ only in the arrangement of the bars. The bar

chart to the right is more likely to be remembered since the stairwise arrangement of the

quantities allows users to encode them in a single perceptual chunk. That is, users can

reduce their memorization task to two items: the order of the labels along the horizontal

axis (i.e., d a c b), and the incremental difference between the quantities.

4

3

2

1

4

3

2

1

a b c d d a c b

Figure 71: A Memorable Graphic Presentation.

Since BOZ does not manipulate memory for data as one of its theoretical parameters, it

presently has no capability for arranging data in ways known to improve recall.

7.5 Further Issues

Extended Model of Mathematical Metaphor. The number of different kinds of

presentations that BOZ is able to produce is limited by the perceptual operators in the

15

perceptual operator catalog and the set of corresponding graphical presentation objects.

BOZ’s present catalog of perceptual operators contains operators to support simple visual

search, and perceptual arithmetic and logical computations. This limited set hardly

exhausts the set of possible inferences that can be made perceptually. BOZ’s current set of

operators and objects is limited in the following way. Many graphical objects and shapes,

such as the graphs of many studied functions (e.g., circle, parabola, tangent) enjoy special

computational properties that can be used to derive geometric solutions to problems that are

equivalent to propositional solutions of the same problems. For example, if we can take

the derivative of a function graph at any point by drawing a line tangent to the graph at that

point and judging the slope of the tangent line. Similarly, we can graphically support the

task of computing values of the function πr2 by allowing the user to draw circles on the

screen and then unwrapping the figure into a straight line so it can be measured.

Incorporating these features in BOZ would require a more sophisticated semantic theory for

the graphical presentation objects in BOZ’s repertoire. BOZ presently contains only the

<point>, <line>, <polygon>, and <rectangle> objects and information about relationships

between their endpoints and planar dimensions.

How Much Information Can Be Encoded in a Graphic? Another interesting

question raised by BOZ is that of how much information can be encoded in a single

graphic. This question decomposes into two questions: (1) How many different

dimensions of information can be encoded in a graphic? and (2) How many values can be

encoded within each dimension? In the information-theoretic sense, the amount of

information encodable in a single presentation is upper-bounded by the number of available

primitive graphical languages, assuming that each graphical language is used to encode

exactly one domain set of information. Of course, this bound is further restricted by the

processing capabilities of the user. Bertin (1983) proposes that a maximum of three

dimensions of information can be accommodated in a single presentation, each dimension

using a single graphical language. Bertin bases his argument on the observation that the

16

human user is generally unable to perceive and maintain more than three perceptual

dimensions in short-term memory at any one time. It is interesting to note that the graphic

in Figure 61 encodes six dimensions of information.

The second part of this question concerns the number of data items that can be effectively

presented using any one graphic design. Any graphic design has a practical limit on the

number of items that can be accommodated in the plane of the graphic. For instance, the

graphic airline schedule in Figure 24 is likely to accommodate a maximum of twenty or

thirty flights. Displaying more flights in the graphic would require that we decrease the

size of each flight box to a size that is not easily or accurately perceptible. Similarly,

adding more connections to the airline graphic in Figure 47 would greatly complicate the

user’s task of tracing the connecting lines through the presentation.

7.6 Concluding Remarks

This research was an attempt to combine two worlds. It was an attempt to collect the

design problems and constraints of two worlds of people who design information artifacts:

Computer Scientists and Applied Cognitive Psychologists. In the real world of design

practitioners of the computer and psychological sciences operate independently. Artifacts

are subjected to a gauntlet of design criteria, each world of designers working their magic

and passing the artifact along to the next. Artifacts are designed by those who understand

run time efficiency, implementation costs, and high functionality, and are then redesigned

as well as can be done by those sympathetic to the issues of human factors. It has been the

goal of this dissertation to show that another strategy exists: a strategy in which both

worlds work on the artifact at the same time using a set of interdisciplinary tools. BOZ is

an attempt to create a computational model of design that includes the design constraints of

both worlds in a single set of design elements that inherit the constraints of both design

worlds. The perceptual operators and graphical objects that comprise BOZ’s design

elements are computational constructs that have specific psychological implications. In

17

BOZ there is no way to choose a perceptual operator or a graphical object without thinking

about both sets of design issues. For each perceptual operator and graphical object, BOZ

makes explicit its computational power as well as the degree of success users are likely to

achieve when using it. BOZ’s interdisciplinary approach does not purport to eliminate

conflicts between design constraints. Rather, designers from both worlds choose among

BOZ’s elements together. This allows the consequences of every design choice for either

world to be made explicit at each step in the design process. It is hoped that providing a

context in which designers from different worlds can work together (or at the same time),

artifacts that are both highly functional and highly usable can be more consistently

designed. As more is understood about the way humans interact with information artifacts,

implicating other disciplines, a future research challenge will be to investigate ways of

further collapsing the design of information artifacts into a shared enterprise.

APPENDIX

1

APPENDIX

BOZ’S PRIMITIVE GRAPHICAL LANGUAGES

The following describes the complete set of primitive graphical languages and their

associated perceptual operators. Each entry contains the following elements:

(a) The set of data types that can appear in graphical facts and perceptual operators

associated with the primitive graphical language.

(b) The expressiveness of the primitive graphical language.

(c) The notation for expressing graphical facts in the primitive graphical language.

(d) The perceptual operators (POPs) associated with the primitive graphical language.

HorzPos
Graphical Language Data Types

PHorzPos = {<point> <line> <rectangle> <polygon> <label> <horzpos>

<real> <integer>}

Domain Set Expressiveness

Nominal = 25

Ordinal = 25

Quantitative = 500

Graphical Fact Notation

(HorzPos <object> <horzpos>)

where <object> := {<point> <line> <rectangle> <polygon> <label>}

2

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-horz-pos
search-obj-at-horz-pos
search-any-horz-obj
verify-obj-at-horz-pos

COMPUTATION OPERATORS
left-of?
right-of?
horz-coincidence?
determine-horz-distance
horz-forward-projection1
horz-forward-projection2
horz-multiple-projection
horz-forward-projection1
horz-forward-projection2
find-horz-midpoint
find-horz-midpoint

VertPos
Analogous to the HorzPos language.

Shading
Graphical Language Elements:

PShading = {<rectangle> <polygon> <shade>}

Domain Set Expressiveness:

Nominal = 3

Ordinal = 3

Quantitative = 0

Graphical Fact Notation

(Shading <object> <shade>)

where <object> := {<rectangle> <polygon>}

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-shade
search-obj-with-shade
search-any-obj-and-shade
verify-obj-and-shade

COMPUTATION OPERATORS
lighter-shade?
darker-shade?
same-shade?

3

Shape
Graphical Language Elements

PShape = {<polygon> <shape>}

Domain Set Expressiveness

Nominal = 4

Ordinal = 0

Quantitative = 0

Graphical Fact Notation

(Shape <object> <shape>)

where <object> := {<polygon>}

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-shape
search-obj-with-shape
search-obj-and-shape
verify-obj-and-shape

COMPUTATION OPERATORS
same-shape?

Height
Graphical Language Elements

PHeight = {<rectangle> <height> <integer> <real>}

Domain Set Expressiveness:

Nominal = 5

Ordinal = 10

Quantitative = 500

Graphical Fact Notation

(Height <object> <height>)

where <object> := {<rectangle>}

4

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-height
verify-obj-and-height
search-obj-with-height
search-obj-and-height

COMPUTATION OPERATORS
taller?
shorter?
same-height?
stack-heights1
stack-heights2
stack-heights3
height-difference

Width
analogous to Height

Line Length
Graphical Language Elements

PLineLength = {<line> <linelength> <integer> <real>}

Domain Set Expressiveness

Nominal = 500

Ordinal = 10

Quantitative = 5

Graphical Fact Notation

(LineLength <object> <linelength>)

where <object> := {<line>}

Perceptual Operators (POPs)

SEARCH OPERATORS
determine-line-length
verify-line-and-length
search-line-with-length
search-line-and-length

COMPARISON OPERATORS
line-longer?
line-shorter?
same-length?
length-projection1
length-projection2
multiple-length-projection
length-difference

5

Area
Graphical Language Elements

PArea = {<rectangle> <area> <integer> <real>}

Domain Set Expressiveness:

Nominal = 5

Ordinal = 10

Quantitative = 500

Graphical Fact Notation

(Area <object> <area>)

where <object> := {<rectangle>}

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-area
verify-obj-and-area
search-obj-with-area
search-obj-and-area

COMPUTATION OPERATORS
bigger?
smaller?
same-area?

Line Dashing
Graphical Language Elements:

PLineDashing = {<line> <rectangle> <polygon> <linedashing>}

Domain Set Expressiveness

Nominal = 2

Ordinal = 2

Quantitative = 0

Graphical Fact Notation

(LineDashing <object> <linedashing>)

where <object> := {<line> <rectangle>}

6

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-line-dashing
search-line-with-dashing
search-line-and-dashing
verify-line-and-dashing

Line Thickness

Graphical Language Elements:

PLineThickness = {<line> <rectangle> <polygon> <linethickness>}

Domain Set Expressiveness:

Nominal = 4

Ordinal = 5

Quantitative = 4

Graphical Fact Notation

(LineThickness <object> <linethickness>)

where <object> := {<line> <rectangle> <polygon>}

Perceptual Operators (POPs):

SEARCH OPERATORS
determine-line-thickness
verify-line-and-thickness
search-line-with-thickness
search-line-and-thickness

COMPUTATION OPERATORS
line-thicker?
line-thinner?
same-thickness?
thickness-projection
multiple-thickness-projection
thickness-difference

Connectivity

Graphical Language Elements:

PConnectivity = {<point> <label> <rectangle> <polygon>}

Domain Set Expressiveness:

Nominal = 10

Ordinal = 0

Quantitative = 0

7

Graphical Fact Notation

(Connectivity <object> <object>)

where <object> := {<point> <rectangle> <polygon> <label>}

Perceptual Operators (POPs):

SEARCH OPERATORS
object-connected-to-another?
find-connectee
connected?

Labels
Graphical Language Elements:

PLabels = {<point> <line> <rectangle> <polygon> <label>}

Domain Set Expressiveness:

Nominal = ∞
Ordinal = ∞
Quantitative = ∞

Graphical Fact Notation

(Labels <object> <label>)

where <object> := {<point> <line> <rectangle> <polygon>}

Perceptual Operators (POPs):

SEARCH OPERATORS
read-label
search-object-with-label
verify-object-and-label
search-any-object-and-label

COMPUTATION OPERATORS
same-label?
greater-than-label?
less-than-label?
add-labels
subtract-labels
multiply-labels
divide-labels

Visibility
Graphical Language Elements:

PVisibility = {<point> <line> <rectangle> <polygon> <label> <visibility>}

Domain Set Expressiveness:

Nominal = 2

8

Ordinal = 2

Quantitative = 0

Graphical Fact Notation

(Visibility <object> <visibility>)

where <object> := {<point> <line> <rectangle> <polygon> <label>}

Perceptual Operators (POPs):

SEARCH OPERATORS
search-any-visible-object
verify-object-visible?
search-visible-object

BIBLIOGRAPHY

